microfibrillar composites
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2360
Author(s):  
David Loaeza ◽  
Jonathan Cailloux ◽  
Orlando Santana Pérez ◽  
Miguel Sánchez-Soto ◽  
Maria Lluïsa Maspoch

This work presents the experimental results of the mechanical and fracture behaviour of three polymeric blends prepared from two recycled plastics, namely polypropylene and opaque poly (ethylene terephthalate), where the second one acted as a reinforcement phase. The raw materials were two commercial degrees of recycled post-consumer waste, i.e., rPP and rPET-O. Sheets were manufactured by a semi-industrial extrusion-calendering process. The mechanical and fracture behaviours of manufactured sheets were analyzed via tensile tests and the essential work of fracture approach. SEM micrographics of cryofractured sheets revelated the development of in situ rPP/rPET-O microfibrillar composites when 30 wt.% of rPET-O was added. It was observed that the yield stress was not affected with the addition of rPET-O. However, the microfibrillar structure increased the Young’s modulus by more than a third compared with rPP, fulfilling the longitudinal value predicted by the additive rule of mixtures. Regarding the EWF analysis, the resistance to crack initiation was highly influenced by the resistance to its propagation owing to morphology-related instabilities during tearing. To analyze the initiation stage, a partition energy method was successfully applied by splitting the total work of fracture into two specific energetic contributions, namely initiation and propagation. The results revelated that the specific essential initiation-related work of fracture was mainly affected by rPET-O phase. Remarkably, its value was significantly improved by a factor of three with the microfibrillar structure of rPET-O phase. The results allowed the exploration of the potential ability of manufacturing in situ MFCs without a “precursor” morphology, providing an economical way to promote the recycling rate of PET-O, as this material is being discarded from current recycling processes.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1296
Author(s):  
Abdulhakim Almajid ◽  
Rolf Walter ◽  
Tim Kroos ◽  
Harri Junaedi ◽  
Martin Gurka ◽  
...  

Composite processing and subsequent characterization of microfibrillar composites (MFC) were the focus of this work. Compression molding of wound MFC filaments was used to fabricate MFC composites. The MFC composites were composed of polypropylene (PP) as matrix materials and polyethylene terephthalate (PET) as reinforcement fibers. The PP/PET blends were mixed with PET contents ranging from 22 wt% to 45 wt%. The effect of processing parameters, pressure, temperature, and holding time on the mechanical properties of the MFCs was investigated. Tensile tests were conducted to optimize the processing parameter and weight ratio of PET. Tensile strength and modulus increased with the increase in PET content. PP/45 wt% PET MFC composites properties reached the value of PP/30 wt% GF. Falling weight tests were conducted on MFC composites. The MFC composites showed the ability to absorb the impact energy compared to neat PP and PP/30 wt% GF.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 961
Author(s):  
Yu Wang ◽  
Song Liu ◽  
Huihao Zhu ◽  
Huajian Ji ◽  
Guo Li ◽  
...  

In this work, carbon black (CB)/polyamide 6 (PA6)/polypropylene (PP) microfibrillar composites (MFCs) were fabricated through an extrusion (hot stretching) heat treatment process. The CB-coated conductive PA6 microfibrils with high aspect ratio were in situ generated as a result of the selective accumulation of CB at the interface. At the proper temperature, a 3D entangled conductive structure was constructed in the PP matrix, due to topological entanglement between these conductive microfibrils. This unique conductive structure provided the PP composites with a low electrical conductivity percolation threshold. Moreover, the electromechanical properties of conductive MFCs were investigated for the first time. A great stability, a high sensitivity and a nice reproducibility were achieved simultaneously for CB/PA6/PP MFCs. This work provides a universal and low-cost method for the conductive polymer composites’ (CPCs) fabrication as sensing materials.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 233 ◽  
Author(s):  
Abdulhakim Almajid ◽  
Rolf Walter ◽  
Tim Kroos ◽  
Harry Junaidi ◽  
Martin Gurka ◽  
...  

The concept of microfibrillar composites (MFCs) is adopted to produce composites of polyethylene terephthalate (PET) fiber-reinforced polypropylene (PP) materials. The two polymers were dry mixed with PET content ranging from 22 to 45 wt%. The PET has been used as a reinforcement to improve the mechanical properties of composites. The relationship between the morphology of the MFC structure and the mechanical behavior of the MFC filament was investigated. Analysis of the structure and mechanical behavior helped to understand the influence of the stretching ratio, extruder-melt temperature, stretching-chamber temperature, and filament speed.


2021 ◽  
Vol 13 (2) ◽  
pp. 689 ◽  
Author(s):  
Maja Kuzmanović ◽  
Laurens Delva ◽  
Ludwig Cardon ◽  
Kim Ragaert

Several mixed recycled plastics, namely, mixed bilayer polypropylene/poly (ethylene terephthalate) (PP/PET) film, mixed polyolefins (MPO) and talc-filled PP were selected for this study and used as matrices for the preparation of microfibrillar composites (MFCs) with PET as reinforcement fibres. MFCs with recycled matrices were successfully prepared by a three-step processing (extrusion—cold drawing—injection moulding), although significant difficulties in processing were observed. Contrary to previous results with virgin PP, no outstanding mechanical properties were achieved; they showed little or almost no improvement compared to the properties of unreinforced recycled plastics. SEM characterisation showed a high level of PET fibre coalescence present in the MFC made from recycled PP/PET film, while in the other MFCs, a large heterogeneity of the microstructure was identified. Despite these disappointing results, the MFC concept remains an interesting approach for the upcycling of mixed polymer waste. However, the current study shows that the approach requires further in-depth investigations which consider various factors such as viscosity, heterogeneity, the presence of different additives and levels of degradation.


2020 ◽  
Vol 32 (52) ◽  
pp. 2003938 ◽  
Author(s):  
Maja Kuzmanović ◽  
Laurens Delva ◽  
Ludwig Cardon ◽  
Kim Ragaert

2020 ◽  
Vol 7 ◽  
Author(s):  
Miroslav Slouf ◽  
Aleksandra Ujcic ◽  
Martina Nevoralova ◽  
Tatana Vackova ◽  
Luca Fambri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document