protectin dx
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Jun Wang ◽  
Jordane Ossemond ◽  
Yann Le Gouar ◽  
Françoise Boissel ◽  
Didier Dupont ◽  
...  

Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qing-xiang Zhao ◽  
Yi-hao Wang ◽  
Si-cong Wang ◽  
Song Xue ◽  
Zhen-xin Cao ◽  
...  

Background: Neuroinflammation plays a crucial role in initiating and sustaining lumbar radicular pain (LRP). Protectin DX (PDX) has been experimentally verified to possess pro-resolving properties and anti-inflammatory effects. This study aimed to observe the analgesic effects of PDX and its potential mechanisms in LRP rats with non-compressive lumbar disc herniation (NCLDH).Method: Only male rats were selected to avoid gender-related interferences. Rat models of NCLDH were established, and rats were randomly divided into four groups: the sham group, the vehicle group, the PDX (10 ng PDX) group, and the PDX (100 ng PDX) group. Changes in the mechanical withdrawal threshold and thermal withdrawal latency were observed for 7 days. The mRNAs of pro-inflammatory and anti-inflammatory mediators were evaluated via real-time polymerase chain reaction, whereas western blot and immunohistochemistry were separately conducted to assess the expression levels of autophagy-related proteins and adenosine monophosphate-activated protein kinase (AMPK) signaling.Results: Intrathecal delivery of PDX reduced interleukin (IL)-6 and IL-1β mRNA levels and facilitated mRNA transcription of transforming growth factor-β1, with attenuation of mechanical and thermal hyperalgesia in LRP rat models. With the application of nucleus pulposus to the dorsal root ganglion, autophagy flux and AMPK signaling were severely disrupted in the spinal dorsal horns, and intrathecal treatment with PDX could dose-dependently restore the dysfunction of autophagy flux and AMPK signaling.Conclusion: These data suggest that PDX possesses pro-resolving properties and exerts potent analgesic effects in LRP by affecting autophagy flux via AMPK signaling.


Biochemistry ◽  
2021 ◽  
Author(s):  
Wan-Chen Tsai ◽  
Chakrapani Kalyanaraman ◽  
Adriana Yamaguchi ◽  
Michael Holinstat ◽  
Matthew P. Jacobson ◽  
...  

2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Laís R. Perazza ◽  
Patricia L. Mitchell ◽  
Farah Lizotte ◽  
Benjamin A. H. Jensen ◽  
Philippe St‐Pierre ◽  
...  

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Shengwei Jin ◽  
Siyuan Sun ◽  
Hanzhi Ling ◽  
Jinglan Ma ◽  
Xu Zhang ◽  
...  

AbstractRegulatory T-cell (Treg)/T-helper 17 (Th17) cell balance plays an important role in the progression of rheumatoid arthritis (RA). Our study explored the protective effect of protectin DX (PDX), which restored Treg/Th17 cell balance in RA, and the role of the nucleotide-binding domain (NOD)–like receptor protein 3 (NLRP3) inflammasome pathway in this process. Using mass spectrometry, we discovered that level of PDX decreased in active-RA patients and increased in inactive-RA patients compared with HCs, and serum PDX was a potential biomarker in RA activity detection (area under the curve [AUC] = 0.86). In addition, a collagen-induced arthritis (CIA) mice model was constructed and PDX obviously delayed RA progression in the CIA model, upregulating Tregs and anti-inflammatory cytokines while downregulating Th17 cells and pro-inflammatory cytokines. Moreover, NLRP3 knockout and rescue experiments demonstrated that NLRP3 participated in PDX-mediated Treg/Th17 cell balance restoration, joint injury amelioration and inflammatory-response attenuation using Nlrp3−/− mice. Furthermore, microarray and verified experiments confirmed that PDX reduced NLRP3 expression via miRNA-20a (miR-20a). In summary, we confirmed for the first time that PDX could effectively ameliorate CIA progression by restoring Treg/Th17 cell balance, which was mediated by inhibition of the NLRP3 inflammasome pathway via miR-20a.


Biochimie ◽  
2020 ◽  
Vol 179 ◽  
pp. 281-284
Author(s):  
Michel Lagarde ◽  
Michel Guichardant ◽  
Nathalie Bernoud-Hubac

2020 ◽  
Vol 24 (23) ◽  
pp. 14001-14012
Author(s):  
Jing‐Xiang Yang ◽  
Ming Li ◽  
Xin Hu ◽  
Jia‐Chao Lu ◽  
Qian Wang ◽  
...  

2020 ◽  
Vol 68 (5) ◽  
pp. 280-288
Author(s):  
Haifa Xia ◽  
Yangyang Ge ◽  
Fuquan Wang ◽  
Yu Ming ◽  
Zhouyang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document