scholarly journals Low- and High-Pressure Membrane Separation in the Production of Process Water for Coke Quenching

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 937
Author(s):  
Anna Trusek ◽  
Maciej Wajsprych ◽  
Andrzej Noworyta

Although the time for operating mines and coking plants in many countries is coming to an end due to climate change, we must still ensure that the pollution generated by this source of the economy is minimized. Despite the several stages of treatment of the coke-oven effluent, completed with nitrification and denitrification processes preceding final sedimentation, the stream obtained does not meet the requirements of water for coke quenching. That is why the stream after biodegradation and sedimentation was treated on membrane units to ensure water reusing in the coking plant. As the subjected stream contained both solid and dissolved pollutants, a two-stage system was proposed: low- and high-pressure membrane filtration. Industrial modules were tested on pilot units operating under industrial plant conditions. In the case of the ultrafiltration process, all the tested ultrafiltration modules fulfilled the primary task. All of them separated almost completely the turbidities present in the stream, which would have disturbed the operation of the high-pressure plant. Considering the decrease in permeate flux and the possibility of cleaning, a PCI membrane made of PVDF tubes with a diameter of 12.5 mm and pore size of 20 μm was selected. Regarding the high-pressure membrane filtration, the reverse osmosis membrane was significantly better in the removal efficiency of both organic and inorganic dissolved substances. An operating pressure of 3 MPa was chosen for the system. Hence, membrane processes, which are not used as stand-alone treatment units for coke-oven effluents, function well as a final treatment stage.

Author(s):  
Chyouhwu Brian Huang ◽  
Hung-Shyong Chen

Ultrafiltration (UF) is an important industrial operation and is found in the food industry, separation of oil-water emulsions, treatment effluents from the pulp and paper industry, and environmental protection systems. Despite being widely used in these areas, UF systems exhibit a limiting flux behavior caused by concentration polarization on the membrane surface. Concentration polarization can be severe in macromolecular solutions due to low diffusivity on membrane separation and both mechanical and chemical methods have been used to reduce this phenomenon. This study introduces a new mechanical method that improves the performance of membrane separation and decreases concentration polarization. It involves pulsing the feed flow discontinuously and based on our results, feed flow velocity and solution bypass/membrane filtration time ratio are two vital factors when it comes to improving permeate flux. The proposed method is expected to find wide application, particularly in the processing of macromolecular solution.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


2021 ◽  
Author(s):  
Amirah Syakirah Zahirulain ◽  
Fauziah Marpani ◽  
Syazana Mohamad Pauzi ◽  
'Azzah Nazihah Che Abd Rahim ◽  
Hang Thi Thuy Cao ◽  
...  

Abstract Integration of membrane filtration and biocatalysis has appealing benefits in terms of simultaneous substrate conversion and product separation in one reactor. Nevertheless, the interaction between enzymes and membrane is complex and the mechanism of enzyme docking on membrane is similar to membrane fouling. In this study, focus is given on the assessment of enzyme immobilization mechanism on reverse asymmetric polymer membrane based on the permeate flux data during the procedure. Evaluation of membrane performance in terms of its permeability, fouling mechanisms, enzyme loading, enzyme reusability and biocatalytic productivity were also conducted. Alcohol Dehydrogenase (EC 1.1.1.1), able to catalyze formaldehyde to methanol with subsequent oxidation of NADH to NAD was selected as the model enzyme. Two commercial, asymmetric, flat sheet polymer membranes (PES and PVDF) were immobilized with the enzyme in the reverse mode. Combination of concentration polarization phenomenon and pressure driven filtration successfully immobilized almost 100% of the enzymes in the feed solutions. The biocatalytic membrane reactor recorded more than 90% conversion, stable permeate flux with no enzyme leaching even after 5 cycles. The technique showing promising results to be expanded to continuous membrane separation setup for repeated use of enzymes.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
A. Beicha ◽  
R. Zaamouch ◽  
N. M. Sulaiman

Membrane processes exist for most of the fluid separations encountered in industry. The most widely used is membrane ultrafiltration, pressure driven process which is capable of separating particles in the approximate size range of 0.001 to 0.1 μm. The design of membrane separation processes, like all other processes, requires quantitative expressions relating material properties to separation performance. The factors controlling the performance of ultrafiltration are extensively reviewed. There have been a number of seminal approaches in this field. Most have been based on the rate limiting effects of the concentration polarization of the separated particles at the membrane surface. Various rigorous, empirical and intuitive models exist, which have been critically assessed in terms of their predictive capability and applicability. The decision as to which of the membrane filtration models is the most correct in predicting permeation rates is a matter of difficulty and appears to depend on the nature of the dispersion to separated.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


2014 ◽  
Vol 625 ◽  
pp. 639-643
Author(s):  
Ma Umaira Suhaddha Zainal Abidin ◽  
Hilmi Mukhtar ◽  
Maizatul Shima Shaharun

Natural gas is one of the energy sources in the world. It consists of predominantly methane (CH4), ethane (C2H6), ethylene (C2H4), propane (C3H8) butane (C4H10), pentane (C5H12) and some impurities particularly hydrogen sulfide (H2S) and carbon dioxide (CO2) that need to be treated prior utilized. Amine solution such as diisopropanolamine (DIPA) is used to remove the CO2 and H2S in natural gas processing. However a small amount of amines losses in some unit operations causing amines discharged into the effluent wastewater. The objective of this study are to investigate the flux of water and permeate, and rejection of DIPA solution across reverse osmosis, nanofiltration and ultrafiltration membrane which known as AFC99, AFC40 and CA202 respectively. This paper studies the effect of cross-flow velocity on permeate flux and the effect of feed concentration on observed rejection of DIPA solution across AFC99, AFC40 and CA202 over the operating pressure. The results showed a significant role of cross-flow velocity on membrane performance from aspect flux obtained and phenomenon of concentration polarization that would increase the transport resistance of permeate flow. The highest flux can be achieved by high cross-flow velocity. While for rejection study, rejection of all membranes increase with increase of pressure yet decrease with concentration.


2001 ◽  
Vol 43 (10) ◽  
pp. 233-240 ◽  
Author(s):  
I. Koyuncu ◽  
E. Kural ◽  
D. Topacik

This paper presents the pilot scale membrane separation studies on dyehouse effluents of textile industry. Nanofiltration (NF) membranes which have 2 m2 of surface area were evaluated for membrane fouling on permeate flux and their suitability in separating COD, color and conductivity in relation to operating pressure and feed concentration from textile industry dyehouse effluents. Successive batch runs demonstrated that any serious membrane fouling was not experienced for NF membrane tested in treating this type of wastewater. The permeate flux was found to increase significantly with operating pressure. Flux decreased with increasing recovery rate. The overall removal efficiencies of COD, color and conductivity were found as greater than 97%. COD was lower than 10 mg/l at 12 bar pressures. Permeate COD was also increased with increasing recovery and COD was 30 mg/l with recovery of 80%. Almost complete color removal was achieved with nanofiltration membrane. Color value was also decreased from 500 Pt-Co to 10 Pt-Co unit. This significant reduction in color and COD makes possible the recycle of the permeate in the dyehouse. Permeate conductivity was decreasing with increasing pressure and retention of conductivity increases with increasing pressures. This phenomenon is expected from the analysis of conductivity mass transport model. Economical analysis have been done and the total estimated cost will be 0.81 $/m3 based on 1000 m3/day of and this value is very economical for Istanbul City due to increasing industrial water supply tariffs.


2018 ◽  
Vol 69 (5) ◽  
pp. 1149-1151
Author(s):  
Laura Ruxandra Zicman ◽  
Elena Neacsu ◽  
Felicia Nicoleta Dragolici ◽  
Catalin Ciobanu ◽  
Gheorghe Dogaru ◽  
...  

Ultrafiltration of untreated and pretreated aqueous radioactive wastes was conducted using a spiral-wound polysulphonamide membrane. The influence of process factors on its performances was experimental studied and predicted. Permeate volumetric flux and permeate total suspended solids (TSS) were measured at different values of feed flow rate (7 and 10 m3/h), operating pressure (0.1-0.4 MPa), and feed TSS (15 and 60 mg/L). Permeate flux (42-200 L/(m2�h)) increased with feed flow rate and operating pressure as well as it decreased with an increase in feed TSS, whereas permeate TSS (0.1-33.2 mg/L) exhibited an opposite trend. A 23 factorial plan was used to establish correlations between dependent and independent variables of ultrafiltration process.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 541 ◽  
Author(s):  
Renata Żyłła ◽  
Rafał Milala ◽  
Irena Kamińska ◽  
Marcin Kudzin ◽  
Marta Gmurek ◽  
...  

The aim of the work was to determine the influence of salicylic acid (SA) oxidation products on the effectiveness of their further removal in the membrane filtration process. Two commercial polyamide-based polymer membranes, HL (GE Osmonics) and TS80 (TriSepTM), were used and characterized by SEM microscopic analysis, contact angles, and free surface energy. The products of salicylic acid oxidation, 2,3- and 2,5-dihydroxybenzoic acid and catechol, were determined and their impact on the removal of unreacted salicylic acid in the nanofiltration process was investigated. It was also checked to what extent and why they were retained or not by the membranes. The results of the research have shown that the main product of salicylic acid oxidation, 2,3-dihydroxybenzoic acid, has a negative impact on the retention of salicylic acid in the nanofiltration stage, while the other product, catechol, improves SA retention. The determined values of contact angles correlate well with solubility (S) of the tested compounds, which increases in the following order SSA < S2,3-DHBA < SCAT, while the contact angle of the membrane decreases. Nevertheless, it has been shown that some oxidation products can penetrate the environment due to poorer membrane separation properties of these products.


Sign in / Sign up

Export Citation Format

Share Document