structural mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 17)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Dmitry S Loginov ◽  
Jan Fiala ◽  
Peter Brechlin ◽  
Gary Kruppa ◽  
Petr Novak

Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) – haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation. Oxidative modifications were precisely localized on specific residues using a timsTOF Pro mass spectrometer. The data allowed determination of amino acids directly involved in Hb – Hp interactions and those located outside of the interaction interface yet affected by the complex formation. Data are available via ProteomeXchange with identifier PXD021621.


2021 ◽  
Author(s):  
Vidya Mangala Prasad ◽  
Daniel P. Leaman ◽  
Klaus N. Lovendahl ◽  
Mark A. Benhaim ◽  
Edgar A. Hodge ◽  
...  

SummaryHIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1Å sub-tomogram averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers plus a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rebecca Beveridge ◽  
Antonio N. Calabrese

Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.


2021 ◽  
Author(s):  
Sounak Chowdhury ◽  
Hamed Khakzad ◽  
Gizem Ertürk Bergdahl ◽  
Rolf Lood ◽  
Simon Ekstrom ◽  
...  

AbstractStreptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surface of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes form serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modelling on one of the M proteins, M28 revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by binding of monomeric IgA and C4BP. This indicates that an upsurge of C4BP in the local microenvironment due to damage of the mucosal membrane drives binding of C4BP and monomeric IgA to M28. The results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat the human immune surveillance during both mucosal and systemic infections.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pawel Strzelczyk ◽  
Di Zhang ◽  
Marzena Dyba ◽  
Alexander Wlodawer ◽  
Jacek Lubkowski

Abstract The mechanism of catalysis by the l-glutaminase-asparaginase from Pseudomonas 7A (PGA) was investigated using structural, mass spectrometry, and kinetic data. We had previously proposed mechanism of hydrolysis of l-Asn by the type II l-asparaginase from E. coli (EcAII), but that work was limited to just one enzyme. Based on results presented in this report, we postulate that all homotetrameric l-asparaginases from mesophilic bacteria utilize a common ping-pong mechanism of catalysis consisting of two subsequent nucleophilic substitutions. Several new structures of non-covalent complexes of PGA with different substrates, as well as structures of covalent acyl-enzyme intermediates of PGA with canonical substrates (l-Asp and l-Glu) and an opportunistic ligand, a citrate anion, were determined. The results of kinetic experiments monitored by high-resolution LC/MS, when combined with new structural data, clearly show that the reaction catalyzed by l-glutaminase-asparaginases proceeds through formation of a covalent intermediate, as observed previously for EcAII. Additionally, by showing that the same mechanism applies to l-Asn and l-Gln, we postulate that it is common for all these structurally related enzymes.


2020 ◽  
Vol 225 ◽  
pp. 103844 ◽  
Author(s):  
Daniel S. Ziemianowicz ◽  
Vladimir Sarpe ◽  
D.Alex Crowder ◽  
Troy J. Pells ◽  
Shaunak Raval ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document