scholarly journals Durability And Life Prediction of Fly Ash Geopolymer Concrete In Corrosion Environments Caused By Dry And Wet Circulation

Author(s):  
Qi Sun ◽  
Botao Li ◽  
Yiting Wang ◽  
Hui Wang

Abstract The use of tailings, waste rock, fly ash and slag to prepare geopolymer concrete can effectively solve the problems of land resources occupied by tailings and waste rock, low utilization rate and environmental pollution. Using a dry-wet circulation method, fly ash for a different corrosion solution to geopolymer concrete (referred to as TWGPC) was analysed. Through an appearance change, the corrosion resistance coefficient of the compressive strength, relative dynamic elastic modulus, tensile splitting strength, relative mass and durability were investigated, using scanning electron microscopy (SEM) analysis of the microstructure, The life of TWGPC was predicted based on the GM(1,1) prediction model of grey system theory. The test results show that with an increase in the number of dry-wet cycles, the surface of the specimen crystallizes, cracks, spalls and exhibits other phenomena. The compressive strength corrosion coefficient, relative dynamic elastic modulus, crack tensile strength and relative mass show a trend of increasing first and then decreasing, finally reaching the peak value after 40 cycles. The erosion products generated by the early reaction fill the slurry aggregate pores and improve the strength of TWGPC. In a later stage, a large number of erosion products absorb water and expand, the internal pores of TWGPC are connected, leading to a decrease in strength. Cl- inhibits the corrosion of SO42- in concrete and improves the durability of concrete.

2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1651 ◽  
Author(s):  
Yifei Cui ◽  
Kaikai Gao ◽  
Peng Zhang

This paper studies the statistical correlation in mechanical characteristics of class F fly ash based geopolymer concrete (CFGPC). Experimentally measured values of the compressive strength, elastic modulus and indirect tensile strength of CFGPC specimens made from class F fly ash (CFA) were presented and analyzed. The results were compared with those of corresponding ordinary Portland cement concrete (OPCC) using statistical hypothesis tests. Results illustrated that when possessing similar compressive and tensile strength, the elastic modulus for CFGPC is significantly lower than that of OPCC. The corresponding expressions recommended by standards for the case of OPCC is proved to be inaccurate when applied in the case of CFGPC. Statistical regression was used to identify tendencies and correlations within the mechanical characteristics of CFGPC, as well as the empirical equations for predicting tensile strength and elastic modulus of CFGPC from its compressive strength values. In conclusion, CFGPC and OPCC has significant differences in terms of the correlations between mechanical properties. The empirical equations obtained in this study could provide relatively accurate predictions on the mechanical behavior of CFGPC.


Buildings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 101 ◽  
Author(s):  
Peiman Azarsa ◽  
Rishi Gupta

Geopolymer Concrete (GPC) as a cement-less construction material has attracted worldwide attention due to its lower carbon footprint. There are numerous studies reported on GPC made using different by-products including fly-ash. However, since the use of bottom-ash is comparatively limited, making potassium-based GPC using this waste can be an alternative to Portland Cement Concrete (PCC). In this study, two methods of accelerated curing were used to determine the influence of elevated temperature on the compressive strength of GPC, composed of 50% bottom-ash and 50% fly-ash. GPC specimens were cured using various temperatures including ambient, 30 °C, 45 °C, 60 °C, and 80 °C for 24 h, all followed by 28 days of ambient curing. The highest compressive strength was obtained with steam curing at a temperature of 80 °C for a duration of 24 h. It is of great significance to evaluate elastic modulus of the concrete mixture so that the short-term rigidity of structures subjected to elongation, bending, or compression can be predicted. In this study, a longitudinal Resonant Frequency Test (RFT) as a non-destructive test (NDT) was used to calculate the elastic modulus of both GPC and a comparative PCC mix. Based on the results, PCC had higher resonant frequency (by about 1000 Hz) compared to GPC. A review of empirical models for predicting GPC’s elastic modulus showed that all of the predicted elastic modulus values were lower than experimental values.


2013 ◽  
Vol 800 ◽  
pp. 361-364
Author(s):  
Lin Chun Zhang

A series of experiments were carried out to investigate the effect of wollastonite and fly ash combination on the compressive strength, flexural strength, modulus of elasticity, coming off amount, loss percentage of dynamic elastic modulus as well as surface scaling of concrete. The studies show that the effect of mixing wollastonite and fly ash can reach excellent mechanical and durability performance. The effect of mixing wollastonite and fly ash improve the mechanical and durability is better than mixing fly ash alone. The concrete mixes containing wollastonite and fly ash indicated that wollastonite addition 15% was found advantageous in improving concrete quality.


2013 ◽  
Vol 741 ◽  
pp. 49-54 ◽  
Author(s):  
Gum Sung Ryu ◽  
Gi Hong Ahn ◽  
Kyung Taek Koh ◽  
Jang Hwa Lee

This study intends to investigate experimentally the mechanical characteristics of the compressive strength and elastic modulus of concrete using 3 types of binder that are ordinary Portland cement, fly ash and physically milled fly ash. The test results show that the compressive strength and elastic modulus of the cement-zero concrete reached respectively 30.0 MPa and 19.1 GPa, and indicated that more than 90% of the strength was developed at early age. In addition, a comparison of the geopolymer concrete with ordinary concrete enabled to derive and suggest formulaeexpressing the elastic modulus in function of the compressive strength.


2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 900
Author(s):  
Chamila Gunasekara ◽  
Peter Atzarakis ◽  
Weena Lokuge ◽  
David W. Law ◽  
Sujeeva Setunge

Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7109
Author(s):  
Wei Yang ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang ◽  
Wei Ge ◽  
...  

Geopolymer binder is expected to be an optimum alternative to Portland cement due to its excellent engineering properties of high strength, acid corrosion resistance, low permeability, good chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3) and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic properties of GPC were characterized by visual appearance, compressive strength, mass loss, and neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC increased to some extent due to the presence of gypsum, but this phenomenon was not observed in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore, due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased slightly during the immersion period, and then tended to be stable in the later period. On the contrary, in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being too low to meet the application of practical engineering. In addition, the compressive strength of GPC activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened chemical reaction, and reduced compressive strength. Additionally, according to the testing results of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by 12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore, the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH solution, which is attributed to gypsum crystals that block the pores of the specimen and improve the microstructure of GPC, inhibiting further corrosion of sulfuric acid.


Sign in / Sign up

Export Citation Format

Share Document