scholarly journals Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 235
Author(s):  
Zoi Athanasakopoulou ◽  
Katerina Tsilipounidaki ◽  
Marina Sofia ◽  
Dimitris C. Chatzopoulos ◽  
Alexios Giannakopoulos ◽  
...  

Resistance mediated by β-lactamases is a globally spread menace. The aim of the present study was to determine the occurrence of Escherichia coli producing plasmid-encoded AmpC β-lactamases (pAmpC) in animals. Fecal samples from chickens (n = 159), cattle (n = 104), pigs (n = 214), and various wild bird species (n = 168), collected from different Greek regions during 2018–2020, were screened for the presence of pAmpC-encoding genes. Thirteen E. coli displaying resistance to third-generation cephalosporins and a positive AmpC confirmation test were detected. blaCMY-2 was the sole pAmpC gene identified in 12 chickens’ and 1 wild bird (Eurasian magpie) isolates and was in all cases linked to an upstream ISEcp1-like element. The isolates were classified into five different sequence types: ST131, ST117, ST155, ST429, and ST1415. Four chickens’ stains were assigned to ST131, while five chickens’ strains and the one from the Eurasian magpie belonged to ST117. Seven pAmpC isolates co-harbored genes conferring resistance to tetracyclines (tetM, tetB, tetC, tetD), 3 carried sulfonamide resistance genes (sulI and sulII), and 10 displayed mutations in the quinolone resistance-determining regions of gyrA (S83L+D87N) and parC (S80I+E84V). This report provides evidence of pAmpC dissemination, describing for the first time the presence of CMY-2 in chickens and wild birds from Greece.

1988 ◽  
Vol 34 (5) ◽  
pp. 690-693 ◽  
Author(s):  
Arthur Newton Ley ◽  
Raymond John Bowers ◽  
Saul Wolfe

About 97% of Escherichia coli strains produce β-glucuronidase, but almost all other Enterobacteriaceae lack this enzyme. A D-glucopyranosiduronic acid (glucuronide) possessing a readily detectable β-linked aglycone should, therefore, constitute a specific reagent for the detection of this organism. For this purpose, the title compound has been synthesized for the first time. The synthesis proceeds in eight steps from readily available D-glucuronolactone, anthranilic acid, and chloroacetic acid and can be carried out on a large scale. The compound has the predicted properties: when included in the standard membrane filter test for the analysis of water, indoxyl-β-D-glucuronide allows specific detection of E. coli through the formation of blue colonies that are the result of rapid conversion of the liberated aglycone to indigo. The recovery of E. coli is easily measured and almost quantitative.


2013 ◽  
Vol 79 (24) ◽  
pp. 7556-7561 ◽  
Author(s):  
Kees Veldman ◽  
Peter van Tulden ◽  
Arie Kant ◽  
Joop Testerink ◽  
Dik Mevius

ABSTRACTCloacal swabs from carcasses of Dutch wild birds obtained in 2010 and 2011 were selectively cultured on media with cefotaxime to screen for the presence of extended-spectrum β-lactamase (ESBL)/AmpC-producingEscherichia coli. Subsequently, all cefotaxime-resistantE. coliisolates were tested by broth microdilution and microarray. The presence of ESBL/AmpC and coexisting plasmid-mediated quinolone resistance (PMQR) genes was confirmed by PCR and sequencing. To determine the size of plasmids and the location of ESBL and PMQR genes, S1 pulsed-field gel electrophoresis (PFGE) was performed on transformants, followed by Southern blot hybridization. The study included 414 cloacal swabs originating from 55 different bird species. Cefotaxime-resistantE. coliisolates were identified in 65 birds (15.7%) from 21 different species. In all, 65 cefotaxime-resistantE. coliESBL/AmpC genes were detected, mainly comprising variants ofblaCTX-MandblaCMY-2. Furthermore, PMQR genes [aac(6′)-lb-cr,qnrB1, andqnrS1] coincided in seven cefotaxime-resistantE. coliisolates. Overall, replicon typing of the ESBL/AmpC-carrying plasmids demonstrated the predominant presence of IncI1 (n= 31) and variants of IncF (n= 18). Our results indicate a wide dissemination of ESBL and AmpC genes in wild birds from The Netherlands, especially among aquatic-associated species (waterfowl, gulls, and waders). The identified genes and plasmids reflect the genes found predominantly in livestock animals as well as in humans.


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


2009 ◽  
Vol 75 (18) ◽  
pp. 5999-6001 ◽  
Author(s):  
Gosia K. Kozak ◽  
David L. Pearl ◽  
Julia Parkman ◽  
Richard J. Reid-Smith ◽  
Anne Deckert ◽  
...  

ABSTRACT Sulfonamide-resistant Escherichia coli and Salmonella isolates from pigs and chickens in Ontario and Québec were screened for sul1, sul2, and sul3 by PCR. Each sul gene was distributed differently across populations, with a significant difference between distribution in commensal E. coli and Salmonella isolates and sul3 restricted mainly to porcine E. coli isolates.


1982 ◽  
Vol 152 (1) ◽  
pp. 26-34
Author(s):  
M Leduc ◽  
R Kasra ◽  
J van Heijenoort

Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Ngonye Keroletswe ◽  
Runner R. T. Majinda ◽  
Ishmael B. Masesane

One new 3-prenyl-2-flavene, named baphiflavene A, 1, and eleven known compounds, 2-12, were isolated and reported for the first time from Baphia massaiensis using several chromatographic techniques. Their structures were elucidated using different spectroscopic techniques; 1D and 2D-NMR, HRMS, GC-MS, UV/Vis, FTIR and by comparison with literature data. The isolates were tested against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans to establish their preliminary antimicrobial activities. The results revealed that compound 1 had moderate activities against both Gram positive ( B. subtilis and S. aureus) and Gram negative ( E. coli and P. aeruginosa) bacteria, and good activity against C. albicans with inhibition zones of 10–23 mm (compared to 19 mm for chloramphenicol and miconazole standards). To the best of our knowledge, this is the first phytochemical work reported on Baphia massaiensis.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Oumar Ouchar Mahamat ◽  
Manon Lounnas ◽  
Mallorie Hide ◽  
Abelsalam Tidjani ◽  
Julio Benavides ◽  
...  

ABSTRACT We detected for the first time blaNDM-5 and blaOXA-181 in Escherichia coli isolates from hospitalized patients and healthy volunteers in Chad. These resistance genes were located on IncX3 and IncF plasmids. Despite the large diversity of E. coli clones, the identified resistant intestinal isolates belonged mainly to the same sequence type.


2008 ◽  
Vol 190 (20) ◽  
pp. 6598-6608 ◽  
Author(s):  
Tina Jaeger ◽  
Christoph Mayer

ABSTRACT The MurNAc etherase MurQ of Escherichia coli is essential for the catabolism of the bacterial cell wall sugar N-acetylmuramic acid (MurNAc) obtained either from the environment or from the endogenous cell wall (i.e., recycling). High-level expression of murQ is required for growth on MurNAc as the sole source of carbon and energy, whereas constitutive low-level expression of murQ is sufficient for the recycling of peptidoglycan fragments continuously released from the cell wall during growth of the bacteria. Here we characterize for the first time the expression of murQ and its regulation by MurR, a member of the poorly characterized RpiR/AlsR family of transcriptional regulators. Deleting murR abolished the extensive lag phase observed for E. coli grown on MurNAc and enhanced murQ transcription some 20-fold. MurR forms a stable multimer (most likely a tetramer) and binds to two adjacent inverted repeats within an operator region. In this way MurR represses transcription from the murQ promoter and also interferes with its own transcription. MurNAc-6-phosphate, the substrate of MurQ, was identified as a specific inducer that weakens binding of MurR to the operator. Moreover, murQ transcription depends on the activation by cyclic AMP (cAMP)-catabolite activator protein (CAP) bound to a class I site upstream of the murQ promoter. murR and murQ are divergently orientated and expressed from nonoverlapping face-to-face (convergent) promoters, yielding transcripts that are complementary at their 5′ ends. As a consequence of this unusual promoter arrangement, cAMP-CAP also affects murR transcription, presumably by acting as a roadblock for RNA polymerase.


1993 ◽  
Vol 294 (2) ◽  
pp. 521-527 ◽  
Author(s):  
S A Morris ◽  
W P Revill ◽  
J Staunton ◽  
P F Leadlay

Saccharopolyspora erythraea acyl-carrier protein, highly expressed from a T7-based expression plasmid in Escherichia coli, can be selectively released from the cells in near-quantitative yield by a single cycle of freezing and thawing in a neutral buffer. Electrospray mass spectrometry was used to confirm that the recombinant S. erythraea acyl-carrier protein over-expressed in E. coli is present predominantly as the holo-form, with variable amounts of apo-acyl-carrier protein, holo-acyl-carrier protein dimer and holo-acyl-carrier protein glutathione adduct. The holo- and apo-acyl-carrier proteins are both readily purified on a large scale from the freeze-thaw extracts and can be separated from one another by octyl-Sepharose chromatography. The holo-acyl-carrier protein obtained in this way was fully active in supporting the synthesis of acyl-acyl-carrier protein by extracts of S. erythraea.


2014 ◽  
Vol 53 (2) ◽  
pp. 486-492 ◽  
Author(s):  
Sabine Delannoy ◽  
Patricia Mariani-Kurkdjian ◽  
Stephane Bonacorsi ◽  
Sandrine Liguori ◽  
Patrick Fach

Strains ofEscherichia coliO26:H11 that were positive forstx2alone (n= 23), which were not epidemiologically related or part of an outbreak, were isolated from pediatric patients in France between 2010 and 2013. We were interested in comparing these strains with the new highly virulentstx2a-positiveE. coliO26 clone sequence type 29 (ST29) that has emerged recently in Europe, and we tested them by multilocus sequence typing (MLST),stx2subtyping, clustered regularly interspaced short palindromic repeat (CRISPR) sequencing, and plasmid (ehxA,katP,espP, andetpD) and chromosomal (Z2098,espK, andespV) virulence gene profiling. We showed that 16 of the 23 strains appeared to correspond to this new clone, but the characteristics of 12 strains differed significantly from the previously described characteristics, with negative results for both plasmid and chromosomal genetic markers. These 12 strains exhibited a ST29 genotype and related CRISPR arrays (CRISPR2a alleles 67 or 71), suggesting that they evolved in a common environment. This finding was corroborated by the presence ofstx2din 7 of the 12 ST29 strains. This is the first time thatE. coliO26:H11 carryingstx2dhas been isolated from humans. This is additional evidence of the continuing evolution of virulent Shiga toxin-producingE. coli(STEC) O26 strains. A new O26:H11 CRISPR PCR assay, SP_O26_E, has been developed for detection of these 12 particular ST29 strains ofE. coliO26:H11. This test is useful to better characterize thestx2-positive O26:H11 clinical isolates, which are associated with severe clinical outcomes such as bloody diarrhea and hemolytic uremic syndrome.


Sign in / Sign up

Export Citation Format

Share Document