twin spacing
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
YQ Hu ◽  
S Zhang ◽  
P Huang ◽  
F Wang

Graphene and nanotwins are two effective reinforced microstructural features to achieve improved mechanical properties of metallic composites, while the two features are generally applied separately. In this study, graphene/nano-twinned Cu nanocomposites models with different arrangement of the graphene and twin boundaries were designed by using molecular dynamics (MD) simulations, and the dislocation processes and the interactions between dislocation and graphene/twin were simulated and investigated. The simulation results indicated the arrangement of graphene and nanotwin affects the work hardening behaviors in the graphene/nano-twinned Cu composites, i.e., two staged work hardening behavior corresponded to cyclic process of dislocation hindrance-absorption-reemission in the model with relatively small twin spacing and twin-graphene spacing, while the work hardening dominated by dislocation intersection and multiplication occurred in the model with large twin-spacing. The simulation provided herein demonstrated that the special arrangement of graphene and nanotwins led a way to tailoring the mechanical properties of metallic composites with various work hardening behaviors. Graphical abstract Highlights 1. Dislocation reactions between twins and graphene were simulated and analyzed. 2. Twin-graphene distance and the twin distance play key roles in the reaction. 3. The mechanism corresponding to work hardening changes in the limited two distances.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 619 ◽  
Author(s):  
Wenqi Guo ◽  
Haitao Jiang ◽  
Shiwei Tian ◽  
Guihua Zhang

In order to investigate the dynamic mechanical behavior of TiAl alloys and promote their application in the aerospace industry, uniaxial compression of Ti-44Al-4Nb-1.5Mo-0.007Y (at %) alloy was conducted at a temperature range from 25 to 400 °C with a strain rate of 2000 s‒1. Twinning is found to be the dominating deformation mechanism of the γ phase at all temperatures, and the addition of Nb and Mo has a chemical impact on the alloy and reduces the stacking fault energy of the γ phase. The decreased stacking fault energy increases the twinnability; thus, the deformation is dominated by twinning, which increases the dynamic strength of the alloy. With the temperature increasing from 25 to 400 °C, the average spacing of twins in the γ phase increases from 32.4 ± 2.9 to 88.1 ± 9.2 nm. The increased temperature impedes the continuous movement of partial dislocations and finally results in an increased twin spacing in the γ phase.


Metals ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 344 ◽  
Author(s):  
Jing Han ◽  
Jiapeng Sun ◽  
Ying Han ◽  
Hua Zhu ◽  
Liang Fang
Keyword(s):  

2017 ◽  
Vol 133 ◽  
pp. 134-146 ◽  
Author(s):  
YubRaj Paudel ◽  
Christopher D. Barrett ◽  
Mark A. Tschopp ◽  
Kaan Inal ◽  
Haitham El Kadiri
Keyword(s):  

2014 ◽  
Vol 81 (10) ◽  
Author(s):  
Linli Zhu ◽  
Xiang Guo ◽  
Jian Lu

The influence of surface stress on the yield strength of nanotwinned polycrystal face-centered-cubic (FCC) metallic nanowire is theoretically investigated. The contribution of surface boundaries on the strengthening/softening is analyzed in the framework of continuum mechanics theory by accounting for the surface energy effects. The other strengthening mechanisms originated from the inner boundaries are described by the Taylor model for the nanotwinned polycrystalline metals. The theoretical results demonstrate that the yield strength of nanotwinned polycrystal wires is dependent on the twin spacing, grain size and the geometrical size of the wire. The surface stress effects on the strength perform more and more significantly with decreasing the wire diameter, especially for the diameter smaller than 20 nm. In addition, the dependence of surface stress on the strength is also relevant to the size of microstructures as well as the magnitude and direction of surface stress. These results may be useful in evaluating the size-dependent mechanical performance of nanostructured materials.


2014 ◽  
Vol 83 ◽  
pp. 33-36 ◽  
Author(s):  
Leonardo Velasco ◽  
Mikhail N. Polyakov ◽  
Andrea M. Hodge

2013 ◽  
Vol 535-536 ◽  
pp. 109-112
Author(s):  
Chong Yang Gao ◽  
W.R. Lu

In this paper, a constitutive description of the true stress-strain behaviors of nano-twinned metals has been proposed. The size effects of nano-scale twin boundaries (TBs) and ultra-fine grain boundaries (GBs) are considered in the athermal stress. The evolution of the dislocation density with strain under the influence of strain rate and temperature is introduced in the thermal stress based on our previous meso-scale constitutive model. The new model can effectively describe the strength transition regime in nano-twinned metals. The proposed model’s predictions of true stress-strain relation curves for nano-twinned copper are compared with the experimental results of uniaxial tension tests for validation. The comparisons show that the previous models in literature for the dependence of initial yield strength on twin spacing cannot describe the experimental data correctly when the twin spacing tends to zero; however, the phenomenological model proposed in this paper for the twin spacing depending relation is theoretically rational and can well describe the experimental data in the whole range of twin spacing.


2012 ◽  
Vol 1524 ◽  
Author(s):  
B. Radhakrishnan ◽  
S.B. Gorti ◽  
R.M. Patton ◽  
S. Simunovic

ABSTRACTAn optimization technique is coupled with crystal plasticity based finite element (CPFE) computations to aid the microstructural design of a wrought magnesium alloy for improved strength and ductility. The initial microstructure consists of a collection of sub-micron sized grains containing deformation twins. The variables used in the simulations are crystallographic texture, and twin spacing within the grains. It is assumed that plastic deformation occurs mainly by dislocation slip on two sets of slip systems classified as hard and soft modes. The hard modes are those slip systems that are inclined to the twin planes and the soft mode consists of dislocation glide along the twin plane. The CPFE code calculates the stress-strain response of the microstructure as a function of the microstructural parameters and the length-scale of the features. A failure criterion based on a critical shear strain and a critical hydrostatic stress is used to define ductility. The optimization is based on the sequential generation of an initial population defined by the texture and twin spacing variables. The CPFE code and the optimizer are coupled in parallel so that new generations are created and analyzed dynamically. In each successive generation, microstructures that satisfy at least 90% of the mean strength and mean ductility in the current generation are retained. Multiple generation runs based on the above procedure are carried out in order to obtain maximum strength-ductility combinations. The implications of the computations for the design of a wrought magnesium alloy are discussed. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.


Sign in / Sign up

Export Citation Format

Share Document