myodural bridge
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Bryson Grondel ◽  
Michael Cramberg ◽  
Skye Greer ◽  
Bruce A. Young


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhao-Xi Zhang ◽  
Jin Gong ◽  
Sheng-Bo Yu ◽  
Chan Li ◽  
Jing-Xian Sun ◽  
...  

AbstractA dense bridge-like tissue named the myodural bridge (MDB) connecting the suboccipital muscles to the spinal dura mater was originally discovered in humans. However, recent animal studies have revealed that the MDB appears to be an evolutionarily conserved anatomic structure which may have significant physiological functions. Our previous investigations have confirmed the existence of the MDB in finless porpoises. The present authors conducted research to expound on the specificity of the MDB in the porpoise Neophocana asiaeorientalis (N.asiaeorientalis). Five carcasses of N.asiaeorientalis, with formalin fixation, were used for the present study. Two of the carcasses were used for head and neck CT scanning, three-dimensional reconstructions, and gross dissection of the suboccipital region. Another carcass was used for a P45 plastination study. Also, a carcass was used for a histological analysis of the suboccipital region and also one was used for a Scanning Electron Microscopy study. The results revealed that the MDB of the N.asiaeorientalis is actually an independent muscle originating from the caudal border of the occiput, passing through the posterior atlanto-occipital interspace, and then attaches to the cervical spinal dura mater. Thus the so called MDB of the N.asiaeorientalis is actually an independent and uniquely specialized muscle. Based on the origin and insertion of this muscle, the present authors name it the ‘Occipital-Dural Muscle’. It appears that the direct pull of this muscle on the cervical spinal dura mater may affect the circulation of the cerebrospinal fluid by altering the volume of the subarachnoid space via a pumping action.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiang Xu ◽  
Chang-Xi Shao ◽  
Ying Zhang ◽  
Yu Zhang ◽  
Cong Liu ◽  
...  

AbstractThe myodural bridge (MDB) is a dense connective tissue bridge connecting the suboccipital muscles to the spinal dura mater, and it has been proven to be a normal common existing structure in humans and mammals. Some scholars believe that the suboccipital muscles can serve as a dynamic cerebrospinal fluid (CSF) pump via the MDB, and they found head rotations promote the CSF flow in human body, which provided evidence for this hypothesis. Head movement is a complex motion, but the effects of other forms of head movement on CSF circulation are less known. The present study explored the effects of head-nodding on CSF circulation. The CSF flow of 60 healthy volunteers was analyzed via cine phase-contrast magnetic resonance imaging at the level of the occipitocervical junction before and after one-minute-head-nodding period. Furthermore, the CSF pressures of 100 volunteers were measured via lumbar puncture before and after 5 times head-nodding during their anesthetizing for surgical preparation. As a result, it was found that the maximum and average CSF flow rates at the level of the upper border of atlas during ventricular diastole were significantly decreased from 1.965 ± 0.531 to 1.839 ± 0.460 ml/s and from 0.702 ± 0.253 to 0.606 ± 0.228 ml/s respectively. In the meantime, the changes in the ratio of cranial and caudal orientation of the net flow volume were found differed significantly after the one-minute-head-nodding period (p = 0.017). And on the other hand, the CSF pressures at the L3–L4 level were markedly increased 116.03 ± 26.13 to 124.64 ± 26.18 mmH2O. In conclusion, the head-nodding has obvious effects on CSF circulation and head movement is one of the important drivers of cerebrospinal fluid circulation. We propose that the suboccipital muscles, participating in various head movements, might pull the dura sac via the myodural bridge, and thus, head movement provides power for the CSF circulation.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Ma ◽  
Wei Tang ◽  
De-Zheng Gong ◽  
Xing-Yi Li ◽  
Jing-Hui Zhang ◽  
...  

AbstractThe myodural bridge (MDB) connects the suboccipital musculature to the spinal dura mater (SDM) as it passed through the posterior atlanto-occipital and the atlanto-axial interspaces. Although the actual function of the MDB is not understood at this time, it has recently been proposed that head movement may assist in powering the movement of cerebrospinal fluid (CSF) via muscular tension transmitted to the SDM via the MDB. But there is little information about it. The present study utilized dogs as the experimental model to explore the MDB’s effects on the CSF pressure (CSFP) during stimulated contractions of the suboccipital muscles as well as during manipulated movements of the atlanto-occiptal and atlanto-axial joints. The morphology of MDB was investigated by gross anatomic dissection and by histological observation utilizing both light microscopy and scanning electron microscopy. Additionally biomechanical tensile strength tests were conducted. Functionally, the CSFP was analyzed during passive head movements and electrical stimulation of the suboccipital muscles, respectively. The MDB was observed passing through both the dorsal atlanto-occipital and the atlanto-axial interspaces of the canine and consisted of collagenous fibers. The tensile strength of the collagenous fibers passing through the dorsal atlanto-occipital and atlanto-axial interspaces were 0.16 ± 0.04 MPa and 0.82 ± 0.57 MPa, respectively. Passive head movement, including lateral flexion, rotation, as well as flexion–extension, all significantly increased CSFP. Furthermore, the CSFP was significantly raised from 12.41 ± 4.58 to 13.45 ± 5.16 mmHg when the obliques capitis inferior (OCI) muscles of the examined specimens were electrically stimulated. This stimulatory effect was completely eliminated by severing the myodural bridge attachments to the OCI muscle. Head movements appeared to be an important factor affecting CSF pressure, with the MDB of the suboccipital muscles playing a key role this process. The present study provides direct evidence to support the hypothesis that the MDB may be a previously unappreciated significant power source (pump) for CSF circulation.



PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0244774
Author(s):  
Cheng Chen ◽  
Sheng-bo Yu ◽  
Yan-yan Chi ◽  
Guang-yuan Tan ◽  
Bao-cheng Yan ◽  
...  

Recent studies have evidenced that the anatomical structure now known as the myodural bridge (MDB) connects the suboccipital musculature to the cervical spinal dura mater (SDM). In humans, the MDB passes through both the posterior atlanto-occipital and the posterior atlanto-axial interspaces. The existence of the MDB in various mammals, including flying birds (Rock pigeons and Gallus domesticus) has been previously validated. Gentoo penguins are marine birds, able to make 450 dives per day, reaching depths of up to 660 feet. While foraging, this penguin is able to reach speeds of up to 22 miles per hour. Gentoo penguins are also the world’s fastest diving birds. The present study was therefore carried out to investigate the existence and characteristics of the MDB in Gentoo penguin (Pygoscelis papua), a non-flying, marine bird that can dive. For this study, six Gentoo penguin specimens were dissected to observe the existence and composition of their MDB. Histological staining was also performed to analyze the anatomic relationships and characteristic of the MDB in the Gentoo penguin. In this study, it was found that the suboccipital musculature in the Gentoo penguin consists of the rectus capitis dorsalis minor (RCDmi) muscle and rectus capitis dorsalis major (RCDma) muscle. Dense connective tissue fibers were observed connecting these two suboccipital muscles to the spinal dura mater (SDM). This dense connective tissue bridge consists of primarily type I collagen fibers. Thus, this penguin’s MDB appears to be analogous to the MDB previously observed in humans. The present study evidences that the MDB not only exists in penguins but it also has unique features that distinguishes it from that of flying birds. Thus, this study advances the understanding of the morphological characteristics of the MDB in flightless, marine birds.



2021 ◽  
Author(s):  
Zhao-Xi Zhang ◽  
Jin Gong ◽  
Sheng-Bo Yu ◽  
Chan Li ◽  
Jing-Xian Sun ◽  
...  

Abstract A dense bridge-like tissue named the myodural bridge (MDB) connecting the suboccipital muscles and the spinal dura mater was originally discovered in humans. Recent studies have revealed that the MDB confirmed a universal existing normal anatomical structure in mammals which is considered being significant in physiological functions. Our previous investigations have confirmed the existence of MDB in the finless porpoises. We conduct this research to expound the specificity of the MDB in Neophocana asiaeorientalis (N.asiaeorientalis). Five carcasses of N.asiaeorientalis with formalin fixation were used for this study. Two were used for head and neck CT scanning, three-dimensional reconstruction, and dissection of suboccipital region. One was used for P45 plastinated sheets observation. One was for histological analysis of suboccipital region. One was for Scanning electron microscopic study. The results showed that the MDB in N.asiaeorientalis is an independent muscle originated from the caudal border of occiput, directly extended through the posterior atlanto-occipital interspace and connected with the cervical spinal dura mater. Thus the MDB in N.asiaeorientalis is an independent and specialized muscle. Based on the origin and termination of this muscle, we could name it as ‘Occipital-Dural Muscle’. And the direct pull on the cervical spinal dura mater might affect the circulation of the cerebrospinal fluid (CSF) by altering the volume of subarachnoid space of spine.



2020 ◽  
Author(s):  
Cheng Chen ◽  
Sheng-bo Yu ◽  
Yan-yan Chi ◽  
Guang-yuan Tan ◽  
Bao-cheng Yan ◽  
...  

AbstractRecent studies have evidenced that the anatomical structure now known as the myodural bridge (MDB) connects the suboccipital musculature to the cervical spinal dura mater (SDM). In humans, the MDB passes through both the posterior atlanto-occipital and the posterior atlanto-axial interspaces. The present authors suggest that the MDB has important physiological functions in humans. The existence of the MDB in various mammals, including flying birds (Rock pigeons and Gallus domesticus) has been previously validated. Gentoo penguins are marine birds, able to make 450 dives per day, reaching depths of up to 660 feet. Gentoo penguins are also the world’s fastest diving birds. The present study was therefore carried out to investigate the existence and characteristics of the MDB in Gentoo penguin (Pygoscelis papua), a non-flying, marine bird that can dive. While foraging, this penguin is able to reach speeds of up to 22 miles per hour. For this study, six Gentoo penguin specimens were dissected to observe the existence and composition of their MDB. Histological staining was also performed to analyze the anatomic relationships and characteristic of the MDB in the Gentoo penguin. In this study, it was found that the suboccipital musculature in the Gentoo penguin consists of the rectus capitis dorsalis minor (RCDmi) muscle and rectus capitis dorsalis major (RCDma) muscle. Dense connective tissue fibers were observed connecting these two suboccipital muscles to the spinal dura mater (SDM). This dense connective tissue bridge consists of primarily type I collagen fibers. Thus, this penguin’s MDB appears to be analogous to the MDB previously observed in humans. The present study evidences that the MDB not only exists in penguins but it also has unique features that distinguishes it from that of flying birds. Thus, this study advances the understanding of the morphological characteristics of the MDB in flightless, marine birds.



Author(s):  
Huibing Tan ◽  
Torin Chiles ◽  
Yinhua Li ◽  
Tianyi Zhang ◽  
Hangqi Liu ◽  
...  

Cerebrospinal fluid (CSF)-contacting neurons (CSF-N) located in the surface of both brain ventricles and the central canal (cc) in the spinal cord. The cc and CSF maintain a proliferative niche for neural progenitor cells and play a vital role in development of the brain. The CSF circulates in the ventricles and the subarachnoid spaces with the CSF rhythmic flow: cardiac pulsation and respiratory fluctuation. A new concept of CSF motion may be contrary to the classical one that the direction of CSF motion may vary in direction and may be dynamic in its location. The CSF pressure may also depend on the body position. Moderate music-making has been considered a potential approach for rehabilitative and restorative therapy of brain dysfunctions. Recently, we find that the CSF-Ns are present in both the interior CFS in the cc and also exterior CSF around the surface of the spinal cord. We hypothesize that CSF-N as mechanical sensors in the spinal cord could sense motion of the spinal cord. The myodural bridge is a ligament connecting a pair of deep, upper-neck muscles to the dura mater, which envelops the arachnoid mater and contains the CSF surrounding the brain and the spinal cord. We figure out the term “CSF-static compartment” and classify CSF storage location as rostral pool and caudal pool to demonstrate our hypothesis. We presume that the somatic body movement with music-making and rehabilitation-based interventions would orchestrate the CSF motion with head movement, myodural bridge stretching and puling as well as spinal bending.



2020 ◽  
Author(s):  
Hua‐Xun Lai ◽  
Jian‐Fei Zhang ◽  
Ting‐Wei Song ◽  
Bo Liu ◽  
Wei Tang ◽  
...  
Keyword(s):  


2020 ◽  
Vol 223 (22) ◽  
pp. jeb230896
Author(s):  
Bruce A. Young ◽  
James Adams ◽  
Jonathan M. Beary ◽  
Kent-Andre Mardal ◽  
Robert Schneider ◽  
...  

ABSTRACTDisorders of the volume, pressure or circulation of the cerebrospinal fluid (CSF) lead to disease states in both newborns and adults; despite this significance, there is uncertainty regarding the basic mechanics of the CSF. The suboccipital muscles connect to the dura surrounding the spinal cord, forming a complex termed the ‘myodural bridge’. This study tests the hypothesis that the myodural bridge functions to alter the CSF circulation. The suboccipital muscles of American alligators were surgically exposed and electrically stimulated simultaneously with direct recordings of CSF pressure and flow. Contraction of the suboccipital muscles significantly changed both CSF flow and pressure. By demonstrating another influence on CSF circulation and pulsatility, the present study increases our understanding of the mechanics underlying the movement of the CSF.



Sign in / Sign up

Export Citation Format

Share Document