marker gene sequencing
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 82-122
Author(s):  
Aishwarya Murali ◽  
Varun Giri ◽  
Hunter James Cameron ◽  
Christina Behr ◽  
Saskia Sperber ◽  
...  

The gut microbiome is vital to the health and development of an organism, specifically in determining the host response to a chemical (drug) administration. To understand this, we investigated the effects of six antibiotic (AB) treatments (Streptomycin sulfate, Roxithromycin, Sparfloxacin, Vancomycin, Clindamycin and Lincomycin hydrochloride) and diet restriction (–20%) on the gut microbiota in 28-day oral toxicity studies on Wistar rats. The fecal microbiota was determined using 16S rDNA marker gene sequencing. AB-class specific alterations were observed in the bacterial composition, whereas restriction in diet caused no observable difference. These changes associated well with the changes in the LC–MS/MS- and GC–MS-based metabolome profiles, particularly of feces and to a lesser extent of plasma. Particularly strong and AB-specific metabolic alterations were observed for bile acids in both plasma and feces matrices. Although AB-group-specific plasma metabolome changes were observed, weaker associations between fecal and plasma metabolome suggest a profound barrier between them. Numerous correlations between the bacterial families and the fecal metabolites were established, providing a holistic overview of the gut microbial functionality. Strong correlations were observed between microbiota and bile acids, lipids and fatty acids, amino acids and related metabolites. These microbiome–metabolome correlations promote understanding of the functionality of the microbiome for its host.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alejandro Abdala Asbun ◽  
Marc A. Besseling ◽  
Sergio Balzano ◽  
Judith D. L. van Bleijswijk ◽  
Harry J. Witte ◽  
...  

Marker gene sequencing of the rRNA operon (16S, 18S, ITS) or cytochrome c oxidase I (CO1) is a popular means to assess microbial communities of the environment, microbiomes associated with plants and animals, as well as communities of multicellular organisms via environmental DNA sequencing. Since this technique is based on sequencing a single gene, or even only parts of a single gene rather than the entire genome, the number of reads needed per sample to assess the microbial community structure is lower than that required for metagenome sequencing. This makes marker gene sequencing affordable to nearly any laboratory. Despite the relative ease and cost-efficiency of data generation, analyzing the resulting sequence data requires computational skills that may go beyond the standard repertoire of a current molecular biologist/ecologist. We have developed Cascabel, a scalable, flexible, and easy-to-use amplicon sequence data analysis pipeline, which uses Snakemake and a combination of existing and newly developed solutions for its computational steps. Cascabel takes the raw data as input and delivers a table of operational taxonomic units (OTUs) or Amplicon Sequence Variants (ASVs) in BIOM and text format and representative sequences. Cascabel is a highly versatile software that allows users to customize several steps of the pipeline, such as selecting from a set of OTU clustering methods or performing ASV analysis. In addition, we designed Cascabel to run in any linux/unix computing environment from desktop computers to computing servers making use of parallel processing if possible. The analyses and results are fully reproducible and documented in an HTML and optional pdf report. Cascabel is freely available at Github: https://github.com/AlejandroAb/CASCABEL.


Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 402 ◽  
Author(s):  
Jose F. Garcia-Mazcorro ◽  
Jorge R. Kawas ◽  
Alicia G. Marroquin-Cardona

Bees harbor microorganisms that are important for host health, physiology, and survival. Propolis helps modulate the immune system and health of the colony, but little information is available about its microbial constituents. Total genomic DNA from samples of natural propolis from Apis mellifera production hives from four locations in Mexico were used to amplify a region of the 16S rRNA gene (bacteria) and the internal transcriber spacer (fungi), using PCR. The Illumina MiSeq platform was used to sequence PCR amplicons. Extensive variation in microbial composition was observed between the propolis samples. The most abundant bacterial group was Rhodopila spp. (median: 14%; range: 0.1%–27%), a group with one of the highest redox potential in the microbial world. Other high abundant groups include Corynebacterium spp. (median: 8.4%; 1.6%–19.5%) and Sphingomonas spp. (median: 5.9%; 0.03%–14.3%), a group that has been used for numerous biotechnological applications because of its biodegradative capabilities. Bacillus and Prevotella spp. alone comprised as much as 88% (53% and 35%, respectively) of all bacterial microbiota in one sample. Candida (2%–43%), Acremonium (0.03%–25.2%), and Aspergillus (0.1%–43%) were among the most abundant fungi. The results contribute to a better understanding of the factors associated with the health of Apis mellifera production hives.


2019 ◽  
Author(s):  
Alejandro Abdala Asbun ◽  
Marc A Besseling ◽  
Sergio Balzano ◽  
Judith van Bleijswijk ◽  
Harry Witte ◽  
...  

ABSTRACTMarker gene sequencing of the rRNA operon (16S, 18S, ITS) or cytochrome c oxidase I (CO1) is a popular means to assess microbial communities of the environment, microbiomes associated with plants and animals, as well as communities of multicellular organisms via environmental DNA sequencing. Since this technique is based on sequencing a single gene rather than the entire genome, the number of reads needed per sample is lower than that required for metagenome sequencing, making marker gene sequencing affordable to nearly any laboratory. Despite the relative ease and cost-efficiency of data generation, analyzing the resulting sequence data requires computational skills that may go beyond the standard repertoire of a current molecular biologist/ecologist. We have developed Cascabel, a flexible and easy-to-use amplicon sequence data analysis pipeline, which uses Snakemake and a combination of existing and newly developed solutions for its computational steps. Cascabel takes the raw data as input and delivers a table of operational taxonomic units (OTUs) and a representative sequence tree. Our pipeline allows customizing the analyses by offering several choices for most of the steps, for example different OTU generating methods. The pipeline can make use of multiple computing nodes and scales from personal computers to computing servers. The analyses and results are fully reproducible and documented in an HTML and optional pdf report. Cascabel is freely available at Github: https://github.com/AlejandroAb/CASCABEL and licensed under GNU GPLv3.


2019 ◽  
Author(s):  
Gavin M. Douglas ◽  
Vincent J. Maffei ◽  
Jesse Zaneveld ◽  
Svetlana N. Yurgel ◽  
James R. Brown ◽  
...  

One major limitation of microbial community marker gene sequencing is that it does not provide direct information on the functional composition of sampled communities. Here, we present PICRUSt2 (https://github.com/picrust/picrust2), which expands the capabilities of the original PICRUSt method1 to predict the functional potential of a community based on marker gene sequencing profiles. This updated method and implementation includes several improvements over the previous algorithm: an expanded database of gene families and reference genomes, a new approach now compatible with any OTU-picking or denoising algorithm, and novel phenotype predictions. Upon evaluation, PICRUSt2 was more accurate than PICRUSt1 and other current approaches overall. PICRUSt2 is also now more flexible and allows the addition of custom reference databases. We highlight these improvements and also important caveats regarding the use of predicted metagenomes, which are related to the inherent challenges of analyzing metagenome data in general.


2017 ◽  
Author(s):  
Nicole M. Davis ◽  
Diana M. Proctor ◽  
Susan P. Holmes ◽  
David A. Relman ◽  
Benjamin J. Callahan

AbstractBackgroundThe accuracy of microbial community surveys based on marker-gene and metagenomic sequencing (MGS) suffers from the presence of contaminants — DNA sequences not truly present in the sample. Contaminants come from various sources, including reagents. Appropriate laboratory practices can reduce contamination, but do not eliminate it. Here we introduce decontam (https://github.com/benjjneb/decontam), an open-source R package that implements a statistical classification procedure that identifies contaminants in MGS data based on two widely reproduced patterns: contaminants appear at higher frequencies in low-concentration samples, and are often found in negative controls.Resultsdecontam classified amplicon sequence variants (ASVs) in a human oral dataset consistently with prior microscopic observations of the microbial taxa inhabiting that environment and previous reports of contaminant taxa. In metagenomics and marker-gene measurements of a dilution series, decontam substantially reduced technical variation arising from different sequencing protocols. The application of decontam to two recently published datasets corroborated and extended their conclusions that little evidence existed for an indigenous placenta microbiome, and that some low-frequency taxa seemingly associated with preterm birth were contaminants.Conclusionsdecontam improves the quality of metagenomic and marker-gene sequencing by identifying and removing contaminant DNA sequences. decontam integrates easily with existing MGS workflows, and allows researchers to generate more accurate profiles of microbial communities at little to no additional cost.


2017 ◽  
Author(s):  
Tonya Ward ◽  
Jake Larson ◽  
Jeremy Meulemans ◽  
Ben Hillmann ◽  
Joshua Lynch ◽  
...  

AbstractShotgun metagenomics and marker gene amplicon sequencing can be used to directly measure or predict the functional repertoire of the microbiota en masse, but current methods do not readily estimate the functional capability of individual microorganisms. Here we present BugBase, an algorithm that predicts organism-level coverage of functional pathways as well as biologically interpretable phenotypes such as oxygen tolerance, Gram staining and pathogenic potential, within complex microbiomes using either whole-genome shotgun or marker gene sequencing data. We find BugBase’s organism-level pathway coverage predictions to be statistically higher powered than current ‘bag-of-genes’ approaches for discerning functional changes in both host-associated and environmental microbiomes.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2969 ◽  
Author(s):  
Alex D. Washburne ◽  
Justin D. Silverman ◽  
Jonathan W. Leff ◽  
Dominic J. Bennett ◽  
John L. Darcy ◽  
...  

Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary history affects microbial abundance patterns. Here, we present a method to identify the phylogenetic factors driving patterns in microbial community composition. We use the method, “phylofactorization,” to re-analyze datasets from the human body and soil microbial communities, demonstrating how phylofactorization is a dimensionality-reducing tool, an ordination-visualization tool, and an inferential tool for identifying edges in the phylogeny along which putative functional ecological traits may have arisen.


Author(s):  
Alex D Washburne ◽  
Justin D Silverman ◽  
Jonathan W Leff ◽  
Dominic J Bennett ◽  
John L Darcy ◽  
...  

Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary history affects microbial abundance patterns. Here, we present a method to identify the phylogenetic factors driving patterns in microbial community composition. We use the method, "phylofactorization", to re-analyze datasets from the human body and soil microbial communities, demonstrating how phylofactorization is a dimensionality-reducing tool, an ordination-visualization tool, and an inferential tool for identifying edges in the phylogeny along which putative functional ecological traits may have arisen.


Author(s):  
Alex D Washburne ◽  
Justin D Silverman ◽  
Jonathan W Leff ◽  
Dominic J Bennett ◽  
John L Darcy ◽  
...  

Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary history affects microbial abundance patterns. Here, we present a method to identify the phylogenetic factors driving patterns in microbial community composition. We use the method, "phylofactorization", to re-analyze datasets from the human body and soil microbial communities, demonstrating how phylofactorization is a dimensionality-reducing tool, an ordination-visualization tool, and an inferential tool for identifying edges in the phylogeny along which putative functional ecological traits may have arisen.


Sign in / Sign up

Export Citation Format

Share Document