scholarly journals Descriptive Bacterial and Fungal Characterization of Propolis Using Ultra-High-Throughput Marker Gene Sequencing

Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 402 ◽  
Author(s):  
Jose F. Garcia-Mazcorro ◽  
Jorge R. Kawas ◽  
Alicia G. Marroquin-Cardona

Bees harbor microorganisms that are important for host health, physiology, and survival. Propolis helps modulate the immune system and health of the colony, but little information is available about its microbial constituents. Total genomic DNA from samples of natural propolis from Apis mellifera production hives from four locations in Mexico were used to amplify a region of the 16S rRNA gene (bacteria) and the internal transcriber spacer (fungi), using PCR. The Illumina MiSeq platform was used to sequence PCR amplicons. Extensive variation in microbial composition was observed between the propolis samples. The most abundant bacterial group was Rhodopila spp. (median: 14%; range: 0.1%–27%), a group with one of the highest redox potential in the microbial world. Other high abundant groups include Corynebacterium spp. (median: 8.4%; 1.6%–19.5%) and Sphingomonas spp. (median: 5.9%; 0.03%–14.3%), a group that has been used for numerous biotechnological applications because of its biodegradative capabilities. Bacillus and Prevotella spp. alone comprised as much as 88% (53% and 35%, respectively) of all bacterial microbiota in one sample. Candida (2%–43%), Acremonium (0.03%–25.2%), and Aspergillus (0.1%–43%) were among the most abundant fungi. The results contribute to a better understanding of the factors associated with the health of Apis mellifera production hives.

Author(s):  
Mary Rodríguez-Rabassa ◽  
Pablo López ◽  
Ronald Rodríguez-Santiago ◽  
Antonio Cases ◽  
Marcos Felici ◽  
...  

Tobacco use has been implicated as an immunomodulator in the oral cavity and contributes to the development of oral cancer. In the present study, we investigated the effects of cigarette smoking on bacterial diversity and host responses compared to healthy nonsmoking controls. Saliva samples were collected from eighteen smokers and sixteen nonsmoking individuals by passive drool. The 16S rRNA gene was used to characterize the salivary microbiome by using the Illumina MiSeq platform. Cytokine and chemokine expression analyses were performed to evaluate the host response. Significant differences in cytokine and chemokine expression levels of MDC, IL-10, IL-5, IL-2, IL-4, IL-7, adrenocorticotropic hormone (ACTH), insulin, and leptin were observed between smokers and nonsmokers. Taxonomic analyses revealed differences between the two groups, and some bacterial genera associated with the smokers group had correlations with hormones and cytokines identified as statistically different between smokers and nonsmokers. These factors have been associated with inflammation and carcinogenesis in the oral cavity. The data obtained may aid in the identification of the interactions between the salivary microbiome, host inflammatory responses, and metabolism in smokers.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 418-419
Author(s):  
Gercino F Virgínio Júnior ◽  
Milaine Poczynek ◽  
Ana Paula Silva ◽  
Ariany Toledo ◽  
Amanda Cezar ◽  
...  

Abstract Different levels and sources of NDF can modify the gastrointestinal microbiome. This study evaluated 18 Holstein calves housed in not-bedded suspended individual cages and fed one of three treatments: 22NDF - conventional starter containing 22% NDF (n = 7); 31NDF - starter with 31% NDF, replacing part of the corn by soybean hull (n = 6); and 22NDF+H - conventional starter with 22% NDF plus coast-cross hay ad libitum (n = 5). All animals received 4 L of milk replacer daily (24% CP; 18.5% fat; diluted to 12.5% solids), divided into two meals, being weaned at 8th week of age. After weaning, animals were housed in tropical shelters, fed with the respective solid diet and coast-cross hay ad libitum for all treatments. To evaluate the microbiome, ruminal fluid samples were collected using a modified Geishauser oral probe at weeks 2, 4, 6, 8 and 10, two hours after the morning feeding, and fecal samples were collected at birth (0) and at weeks 1, 2, 4, 8 and 10. The microbial community was determined by sequencing V3 and V4 region amplicons of the 16S rRNA gene that was amplified by PCR and sequenced by the Illumina MiSeq platform. Ruminal microbiome had no differences in diversity for the effects of weeks, treatments or interaction of both factors (Table 1). In feces, the diversity indices and evenness were higher for 22NDF+H when compared to 22NDF, with no difference for 31NDF. All indices were significantly affected by calves age. At birth, calves had the greatest diversity and richness. Week 1 and 2 had less evenness and diversity. Bacteroidota, Firmicutes_A and Firmicutes_C were the most abundant phylum in rumen and feces. The supply of hay was only effective in modifying the fecal microbiome of dairy calves, suggesting a resilience in the ruminal microbiome.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Michelle Martin de Bustamante ◽  
Diego Gomez ◽  
Jennifer MacNicol ◽  
Ralph Hamor ◽  
Caryn Plummer

The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.


2021 ◽  
Author(s):  
Maria Luisa Tello ◽  
Rebeca Lavega ◽  
Margarita Pérez ◽  
Antonio J. Pérez ◽  
Michael Thon ◽  
...  

Abstract The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. Mushrooms are a source of resources still to be revealed, which have applications not only in food, but in many other sectors such as health, industry and biotechnology. Mushroom cultivation consists of the development of selective substrates through composting where the mushroom grows via solid fermentation process. In case of Agaricus bisporus, the compost fully colonized by mycelium hardly produces mushrooms and it is necessary to apply a casing layer with certain physical, chemical and biological characteristics to shift from the vegetative mycelium to the reproductive one, where the native microbiota plays crucial roles. Currently, the industry faces a challenge to substitute the actual peat based casing materials due to the limited natural resources and the impact on the peatlands where peat is extracted.In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for fungi in an Illumina MiSeq. In addition, the microbiome dynamics and evolution (bacterial and fungal communities) in peat based casing along the process of incubation of Agaricus bisporus have been studied, while comparing the effect of fungicidal treatment (Chlorothalonil and Metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities to a specific microbial composition adapted to enhance the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus. Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency during production as well as possibly help us to have a clearer view of the microbial community-pathogen relationships as they are directly related to disease development.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3816 ◽  
Author(s):  
Tomas Erban ◽  
Ondrej Ledvinka ◽  
Martin Kamler ◽  
Bronislava Hortova ◽  
Marta Nesvorna ◽  
...  

BackgroundMelissococcus plutoniusis an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis melliferaL.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies.MethodsThe study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing.ResultsThe bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence ofM. plutoniusthan those from EFB1 asymptomatic colonies.Melissococcus plutoniuswas identified in all EFB1 colonies as well as in some of the control colonies. The proportions ofFructobacillus fructosus,Lactobacillus kunkeei,Gilliamella apicola,Frischella perrara, andBifidobacterium coryneformewere higher in EFB2 than in EFB1, whereasLactobacillus melliswas significantly higher in EFB2 than in EFB0.Snodgrassella alviandL. melliventris,L. helsingborgensisand,L. kullabergensisexhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence ofBartonella apisandCommensalibacter intestiniwere higher in EFB0 than in EFB2 and EFB1.Enterococcus faecalisincidence was highest in EFB2.ConclusionsHigh-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence ofM. plutoniuswithin the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmittingM. plutoniusdue to the greatly increased incidence of the pathogen. The presence ofM. plutoniussequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms thatE. faecalisis a secondary invader toM. plutonius; however, other putative secondary invaders were not identified in this study.


2020 ◽  
Vol 8 (9) ◽  
pp. 1363
Author(s):  
Julia Hankel ◽  
Amr Abd El-Wahab ◽  
Richard Grone ◽  
Birgit Keller ◽  
Eric Galvez ◽  
...  

Anthropomorphism of dogs has affected feeding and the choice of components present in diets for dogs. Conflicting trends are present: raw or vegetarian appear more prevalent. Animal-derived proteins seem to have unfavourable impacts on intestinal microflora by decreasing the presence of Bacteroidetes. This preliminary study evaluates whether effects of diets with animal proteins on intestinal microbiota can be compensated by the addition of certain carbohydrates to dog diet. Eight female beagles were included in a cross-over study and fed a vegetarian diet or the same diet supplemented with feather meal (2.7%) and either 20% of cornmeal, fermented or non-fermented rye (moisture content of the diets about 42%). A 16S rRNA gene amplification was performed within the hypervariable region V4 on faecal samples and sequenced with the Illumina MiSeq platform. The Firmicutes/Bacteroidetes ratio tended to shift to the advantage of Firmicutes when feather meal and cornmeal were added (Firmicutes/Bacteroidetes ratio of 5.12 compared to 2.47 when offered the vegetarian diet) and tended to switch back to the advantage of Bacteroidetes if rye: fermented (2.17) or not (1.03) was added. The addition of rye might have the potential to compensate possible unfavourable effects of diets with animal proteins on intestinal microbiota of dogs.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 638
Author(s):  
Caitlin E. Older ◽  
Aline Rodrigues Hoffmann ◽  
Kathleen Hoover ◽  
Frane Banovic

Although Staphylococcus pseudintermedius is considered the major pathogen associated with superficial canine pyoderma, no study has investigated the entire bacterial community in these lesions with molecular techniques. The objectives of this study were to characterize the bacterial microbiota in two forms of superficial canine pyoderma lesions, superficial bacterial folliculitis (SBF) and epidermal collarette (EC), especially in terms of the staphylococcal community. Swabs from 12 SBF and 9 EC lesions were obtained from eight and six atopic dogs, respectively. Eight samples from the axilla and groin of four healthy dogs served as controls. DNA was extracted for 16S rRNA gene sequencing and quantitative polymerase chain reaction of Staphylococcus spp. and S. pseudintermedius. Healthy skin samples harbored significantly more diverse bacterial communities than pyoderma samples. Healthy samples had communities that were more similar to each other, and were distinct from pyoderma samples. Staphylococcus spp. abundance was increased in pyoderma samples, especially those from EC samples. Although determining species-level identities of staphylococcal sequences revealed many species, S. pseudintermedius was the primary staphylococcal species found in all sample types. As expected, there are many differences in the microbiota when comparing healthy and canine pyoderma lesions samples. These lesions do not seem to be associated with a change in the relative abundance of specific Staphylococcus species, but simply an overall increase in Staphylococcus spp. abundance. The results of this study provide a starting point for future studies investigating how antimicrobial treatments may further change the microbiota associated with these lesions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siwen Deng ◽  
Heidi M.-L. Wipf ◽  
Grady Pierroz ◽  
Ted K. Raab ◽  
Rajnish Khanna ◽  
...  

AbstractDespite growing interest in utilizing microbial-based methods for improving crop growth, much work still remains in elucidating how beneficial plant-microbe associations are established, and what role soil amendments play in shaping these interactions. Here, we describe a set of experiments that test the effect of a commercially available soil amendment, VESTA, on the soil and strawberry (Fragaria x ananassa Monterey) root bacterial microbiome. The bacterial communities of the soil, rhizosphere, and root from amendment-treated and untreated fields were profiled at four time points across the strawberry growing season using 16S rRNA gene amplicon sequencing on the Illumina MiSeq platform. In all sample types, bacterial community composition and relative abundance were significantly altered with amendment application. Importantly, time point effects on composition are more pronounced in the root and rhizosphere, suggesting an interaction between plant development and treatment effect. Surprisingly, there was slight overlap between the taxa within the amendment and those enriched in plant and soil following treatment, suggesting that VESTA may act to rewire existing networks of organisms through an, as of yet, uncharacterized mechanism. These findings demonstrate that a commercial microbial soil amendment can impact the bacterial community structure of both roots and the surrounding environment.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 419-419
Author(s):  
Gercino F Virgínio Júnior ◽  
Cristiane Tomaluski ◽  
Ana Paula Silva ◽  
Sophia Dondé ◽  
Horácio Montenegro ◽  
...  

Abstract Besides the importance for passive immune transfer, the supply of colostrum accelerates the bacterial colonization of the calf small intestine by providing nutrients, that will function as bacteria growth substrate, as well being a microorganism inoculum source. However, it is not known whether the effect is maintained when the calves are fed with frozen colostrum or colostrum powder. The present work evaluated 15 Holstein calves housed in tropical shelters, fed one of the colostrum sources: I – fresh colostrum from the dam (n = 5), II – frozen colostrum and III – colostrum powder, a dose of 150g of IgG (n = 5). Animals fed with fresh or frozen colostrum received a corresponding volume 10% of its birth weight of high-quality colostrum (IgG > 50g / L). All animals were fed within 4h after birth. From the second meal, calves received 6 L of liquid diet, divided into two meals, being weaned at the 8th week of age. After weaning, calves were grouped housed, and fed with starter and coast-cross hay ad libitum. To evaluate the microbiome, fecal samples were collected at birth and at weeks 1, 2, 4, 8 and 10. The microbial community was determined by sequencing V3 and V4 region amplicons of the 16S rRNA gene that was amplified by PCR and sequenced by the Illumina MiSeq platform. There was no treatment effect for the diversity indices, evenness and richness. Simpson’s diversity and evenness had no effect for weeks. Weeks 1 and 2 had less Shannon’ diversity. Richness was higher for week 0. Analyzing the relative abundance, 31 phyla were identified in the fecal samples, the most abundant being Bacteriodota, Firmicutes_A, Proteobacterias, Fusobacteriota and Firmicutes. Different sources of colostrum can be used to feed dairy calves, without affecting the diversity in the colonization of the intestinal tract.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4458 ◽  
Author(s):  
Yujia Wu ◽  
Xiaopei Chi ◽  
Qian Zhang ◽  
Feng Chen ◽  
Xuliang Deng

Background The interactions between the gut microbiome and obesity have been extensively studied. Although the oral cavity is the gateway to the gut, and is extensively colonized with microbes, little is known about the oral microbiome in people with obesity. In the present study, we investigated the salivary microbiome in obese and normal weight healthy participants using metagenomic analysis. The subjects were categorized into two groups, obesity and normal weight, based on their BMIs. Methods We characterized the salivary microbiome of 33 adults with obesity and 29 normal weight controls using high-throughput sequencing of the V3–V4 region of the 16S rRNA gene (Illumina MiSeq). None of the selected participants had systemic, oral mucosal, or periodontal diseases. Results The salivary microbiome of the obesity group was distinct from that of the normal weight group. The salivary microbiome of periodontally healthy people with obesity had both significantly lower bacterial diversity and richness compared with the controls. The genus Prevotella, Granulicatella, Peptostreptococcus, Solobacterium, Catonella, and Mogibacterium were significantly more abundant in the obesity group; meanwhile the genus Haemophilus, Corynebacterium, Capnocytophaga, and Staphylococcus were less abundant in the obesity group. We also performed a functional analysis of the inferred metagenomes, and showed that the salivary community associated with obesity had a stronger signature of immune disease and a decreased functional signature related to environmental adaptation and Xenobiotics biodegradation compared with the normal weight controls. Discussion Our study demonstrates that the microbial diversity and structure of the salivary microbiome in people with obesity are significantly different from those of normal weight controls. These results suggested that changes in the structure and function of salivary microbiome in people with obesity might reflect their susceptibility to oral diseases.


Sign in / Sign up

Export Citation Format

Share Document