scholarly journals INVESTIGATION ON PREPARATION, CHARACTERIZATION AND PROPERTY EVALUATION OF FGM AL-SI ALLOY CASTINGS PRODUCED BY CAST-DECANTCAST (CDC) PROCESS

Author(s):  
Dr. B. Anandavel ◽  
Dr J Anburaj ◽  
Dr K Thillairajan ◽  
V Devakannan

Aim of this research paper is to study the microstructural behavior and mechanical properties of Functionally Gradient (FG) layer of Al-Si alloy castings produced by CDC process. The effect of decantation time on the thickness of functionally gradient castings of Al-4.5 wt % Si alloy as an inner layer and Al-Si alloy with 12.5 wt %Si as outer layers was studied by CDC process. The three different combinations of FGM castings were characterized for microstructural and wear behavior using metallurgical characterization and mechanical testing. From the microstructural and wear behavior of FGM casting at outer layer, FG layer and inner layer, it is observed that the FG layer of FGM casting showed very wear resistance compared to other two layers in the FGM casting.

2018 ◽  
Vol 18 (2) ◽  
pp. 111-115
Author(s):  
Hassan Abdoos ◽  
Ahmad Tayebi ◽  
Meysam Bayat

Abstract Due to the increasing usage of powder metallurgy (PM), there is a demand to evaluate and improve the mechanical properties of PM parts. One of the most important mechanical properties is wear behavior, especially in parts that are in contact with each other. Therefore, the choice of materials and select manufacturing parameters are very important to achieve proper wear behavior. So, prediction of wear resistance is important in PM parts. In this paper, we try to investigate and predict the wear resistance (volume loss) of PM porous steels according to the affecting factors such as: density, force and sliding distance by artificial neural network (ANN). ANN training was done by a multilayer perceptron procedure. The comparison of the results estimated by the ANN with the experimental data shows their proper matching. This issue confirms the efficiency of using method for prediction of wear resistance in PM steel parts.


2017 ◽  
Vol 907 ◽  
pp. 3-7
Author(s):  
Hülya Akkan ◽  
Mehmet Şi̇mşi̇r ◽  
Kerim Emre Öksüz

NiTi shape memory alloys have attracted significant interest due to their unique superelasticity and high damping performance. In this work, the effect of SiC particle size on both physical and mechanical properties of NiTi matrix composite was investigated. Ni and Ti powders with particle sizes of 40 µm were used with the SiC addition with varying particle sizes of 20 µm and 40 µm, respectively. Composites of NiTi with 1wt. % SiC were fabricated by powder metallurgy technique. The effects of SiCp addition on hardness, relative density and wear behavior of NiTi composites have been investigated. The samples were examined by scanning electron microscope, for microstructural studies and phase development. The results showed that the distribution of the reinforced particle was uniform. Moreover, as the SiC particle size decreases, hardness and wear resistance increase. It was demonstrated that SiC particle size significantly enhanced the wear resistance of NiTi composite.


Author(s):  
Zehra Jilham

ABSTRACTThe aim of this research is to study the mechanical properties and wear behavior of aluminum composite material (AMCs) reinforced with silicon carbide particles with varying percentages (0, 3, 6 and 9) wt. %. These composites samples were prepared by stir casting process. Tensile strength, compression strength, hardness and wear resistance of the prepared composites were analyzed. The result showed that adding SiC reinforced in Al matrix increased tensile strength, compression strength, wear resistance and hardness with increased wt. percentage of silicon carbide reinforced AMCs. Maximum tensile and compression strength and hardness showed at 9 wt. percentage SiC reinforced AMCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
B. R. Senthil Kumar ◽  
M. Thiagarajan ◽  
K. Chandrasekaran

This work has investigated to find the influence of silicate on the wear behavior of LM 24/4 wt.% fly ash hybrid composite. The investigation reveals the effectiveness of incorporation of silicate in the composite for gaining wear reduction. Silicate particles with fly ash materials were incorporated into aluminum alloy matrix to accomplish reduction in wear resistance and improve the mechanical properties. The LM24/silicate/fly ash hybrid composite was prepared with 4 wt.% fly ash particles with 4, 8, 12, 16, 20, and 24 wt.% of silicate using vortex technique. Tribological properties were evaluated under different load (15, 30, 45, 60, and 75 N); sliding velocity (0.75, 1.5, 2.25, and 3 m/sec) condition using pin on disc apparatus and mechanical properties like density, hardness, impact strength, and tensile strength of composites were investigated. In addition, the machining of the aluminum hybrid composite was studied using Taguchi L9orthogonal array with analysis of variance. The properties of the hybrid composites containing 24 wt.% silicates exhibit the superior wear resistance and mechanical properties.


2005 ◽  
Vol 473-474 ◽  
pp. 53-58 ◽  
Author(s):  
Rogerio Colaço ◽  
Rui Vilar

A laser rapid-alloy-prototyping technique, was used to produce a number of alloys with compositions lying in the Fe-rich corner of the Fe-Cr-C system. These alloys were prepared in the form of thick coats deposited on a carbon steel by variable powder feed rate laser cladding. The microstructure of the alloys was analyzed by SEM and their mechanical properties were evaluated by microhardness tests, ball-cratering micro-scale abrasive wear tests and scratch tests. Although a poor correlation between the hardness of the alloys and their wear behavior was observed, the correlation between their wear resistance and the fab factor, measured from the scratch tests, is acceptably good. These results are discussed and analyzed on the basis of the microstructural characteristics of the alloys.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 722
Author(s):  
Morales ◽  
Piamba ◽  
Olaya

We report the results of the influence of the acetylene and oxygen gas pressure on the wear resistance of aluminum–bronze coatings deposited on naval brass substrate by means of the thermal (flame) deposition process. The coatings were characterized by means of scanning electronic microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The adhesion was determined with cross-hatching tests, and the mechanical response was assessed by measuring the nanohardness and by three-body and ball-on-disk abrasive wear tests. The results indicate that changes in the pressure and flow of the gas affect the morphology and the mechanical properties of the coatings, and these effects have consequences for the wear behavior of the coatings. Before the projection of the coatings, numerical simulations were carried out using Jets & Poudres software, where the collision speed of the particles was identified as the most significant factor that influences the mechanical properties and the performance of the coating. The gas pressure modified the hardness and the porosity level, which allowed improving the wear resistance.


Author(s):  
Tian Li ◽  
J. M. T. Davies ◽  
Xiangzhen Zhu

AbstractThe structure and evolution of oxide film in Mg alloys have been a research objective for a long time but are still unclear up to now. In the present work, the structure of the entrained oxide film (which is also known as bifilm) in Mg–Y alloy castings protected by SF6/air cover gas was characterized. It was found that the entrained oxide film can be divided into two typical types: (1) single-layered F-rich films and (2) double-layered films with a F-rich inner layer and a F-poor outer layer. Based on the experimental phenomena and thermodynamic calculation, the evolution mechanism of the oxide film was also revealed. It was found that F element from the cover gas reacted with the melt firstly to form the initial F-rich single-layered film. Then, O and S were also involved in the reaction, transforming the initial film to be a (F, O, S)-rich single-layered film. Finally, when the F element was depleted, the newly formed layer on the existing oxide film is characteristically F-poor but (O, S)-enriched, leading to a double-layered oxide film. It was also found that the oxide film grew faster in SF6/air cover gas than in SF6/CO2 cover gas, resulting in a higher repeatability of mechanical properties of Mg–Y alloy castings.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
I. Jaseem ◽  
R. J. Immanuel ◽  
P. N. Rao ◽  
F. Khan ◽  
B. N. Sahoo ◽  
...  

Aluminum–copper alloy system is extensively used in structural and aerospace applications for its high strength-to-weight ratio, good mechanical and tribological properties. Improving the properties of these alloys would likely widen their application area. In the present work, an attempt has been made to simultaneously enhance the wear resistance and mechanical properties of an Al–Cu alloy, AA2014 by imparting different levels of cryorolling strains and postroll aging treatment. The wear behavior of the material is studied under dry sliding condition by pin-on-disk experiments and mechanical properties are assessed by tensile test. Formation of high fraction of dislocation density and significant refinement of microstructure during cryorolling and nucleation of fine coherent Guinier–Preston (GP) zones of Al2Cu precipitates during postcryoroll aging has led to about 100% increment in the wear resistance of the material. Tensile test results proved that the synergetic effect of cryorolling and aging treatment led to 53% increment in strength (557 MPa) without compromising the material's ductility (22.5%). A detailed investigation on the various mechanisms responsible for the enhanced wear resistance and improved mechanical performance is presented based on the microstructural evidence.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 933 ◽  
Author(s):  
Juan González ◽  
Luis Borja Peral ◽  
Alfredo Zafra ◽  
Inés Fernández-Pariente

High alloy white cast irons (WCI) play an important role in many industrial fields such as mining, cement industry, or grinding due to their high hardness and wear resistance. In all these processes, white cast iron components must work under erosion and abrasion conditions. Many investigations have been carried out with the aim of improving the mechanical properties of this type of alloys. Wear resistance depends on the mechanical properties, mainly hardness. Thus, the WCI are typically heat treated in order to modify its microstructure, improving its tribological and wear behavior. The aim of this study is to propose a mechanical surface treatment, shot peening, as an alternative to global heat treatments, due to its capacity to induce phase transformation and microstructural modification, at the same time that it improves the mechanical properties of materials. Characterization of different treated samples was performed by means of microstructural characterization, X-ray diffraction analysis, SEM observation, hardness and roughness measurements, and erosion tests. The results show that shot peening treatment is able to transform residual austenite and increase hardness in the top surface layer of the material. Both effects contribute to improve the erosion wear behavior of the WCI.


Sign in / Sign up

Export Citation Format

Share Document