directional control valve
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 127-136
Author(s):  
Dmytro O. Lozinskyi ◽  
Oleksandr V. Petrov ◽  
Natalia S. Semichasnova ◽  
Konrad Gromaszek ◽  
Maksat Kalimoldayev ◽  
...  

2021 ◽  
Author(s):  
Jan Bartolj ◽  
Anže Čelik ◽  
Franc Majdič

New additive metal powder technologies are increasingly used for various prototypes. Different powder materials can be used for very complex shapes. Water hydraulics needs new technologies and new approaches to enable more frequent use by users. A new shape of housing for a water hydraulic proportional directional control valve was designed. FEM and CFD analyses of the valve housing were performed. Based on the results of the initial numerical analyses, topological optimization of the valve housing was performed. The prototype of the valve was fabricated from non-corrosive Inconel powder using 3D printing process. After machining, the valve was assembled and experimentally validated on the water hydraulic test rig. The new 3D-printed Inconel valve housing is more than 3 times lighter than similar housings of industrial valves.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5029
Author(s):  
Qasim Khadim ◽  
Mehran Kiani-Oshtorjani ◽  
Suraj Jaiswal ◽  
Marko K. Matikainen ◽  
Aki Mikkola

The estimation of the parameters of a simulation model such that the model’s behaviour matches closely with reality can be a cumbersome task. This is due to the fact that a number of model parameters cannot be directly measured, and such parameters might change during the course of operation in a real system. Friction between different machine components is one example of these parameters. This can be due to a number of reasons, such as wear. Nevertheless, if one is able to accurately define all necessary parameters, essential information about the performance of the system machinery can be acquired. This information can be, in turn, utilised for product-specific tuning or predictive maintenance. To estimate parameters, the augmented discrete extended Kalman filter with a curve fitting method can be used, as demonstrated in this paper. In this study, the proposed estimation algorithm is applied to estimate the characteristic curves of a directional control valve in a four-bar mechanism actuated by a fluid power system. The mechanism is modelled by using the double-step semi-recursive multibody formulation, whereas the fluid power system under study is modelled by employing the lumped fluid theory. In practise, the characteristic curves of a directional control valve is described by three to six data control points of a third-order B-spline curve in the augmented discrete extended Kalman filter. The results demonstrate that the highly non-linear unknown characteristic curves can be estimated by using the proposed parameter estimation algorithm. It is also demonstrated that the root mean square error associated with the estimation of the characteristic curve is 0.08% with respect to the real model. In addition, all the errors in the estimated states and parameters of the system are within the 95% confidence interval. The estimation of the characteristic curve in a hydraulic valve can provide essential information for performance monitoring and maintenance applications.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1458
Author(s):  
Slawomir Blasiak ◽  
Pawel Andrzej Laski ◽  
Jakub Emanuel Takosoglu

The main objective of the study was to design a pneumatic directional control valve for controlling pneumatic drives and produce it using a rapid prototyping technique. As the basic design assumption was to achieve high performance through a high flow rate and a low pressure drop, it was necessary to determine two flow parameters: the sonic conductance and the critical pressure ratio. The flow rate of compressed air and the diameters of the pneumatic conduits and fittings are important as they affect the rate of travel of the pneumatic cylinder piston. The 3D solid model of the directional control valve, developed in a CAD program, was used to simulate and optimize the flow rate. The analysis was performed by means of ANSYS CFX, a computational flow dynamics program. The main elements of the valve, i.e., the spool and the body, were produced using the PolyJet Matrix technology. The prototype was tested experimentally to determine the nominal flow-rate, calculate the flow parameters in accordance with the ISO 6358-1989 standard and compare them with the CFD simulation data. The simulation results showed very good agreement with the measurement data. The CFD analysis of the 3D solid model enabled us to optimize the flow of compressed air through the valve. The rapid prototyping method was found to be suitable to produce a fully functional directional control valve, which was confirmed through measurements at a test stand. The attempt to combine rapid prototyping used to fabricate pneumatic directional control valves with CFD used to simulate their operation was successful. The study shows that it is possible to design and construct a fully functional directional control valve characterized by high efficiency, high performance and a small pressure loss in a very short time and at a very low cost, which makes rapid prototyping superior to conventional methods of prototype making.


2021 ◽  
Vol 12 (2) ◽  
pp. 93-99
Author(s):  
Oleksandr Petrov ◽  
◽  
Leonid Kozlov ◽  
Natalia Semichastnova ◽  
Olha Zavalniuk ◽  
...  

The article describes a new scheme of a hydraulic drive, which, thanks to the original design of a multimode directional control valve, has energy-efficient properties that are characteristic of load-sensing hydraulic drives. The proposed design of the multimode directional control valve ensures the operation of the hydraulic drive in four modes – unloading the hydraulic pump, regulating the flow of the hydraulic motor, the maximum flow of the hydraulic motor and protection against overload. In each of these modes, the hydraulic drive operates with low power losses due to the presence of a constant balancing pressure drop. This value is formed by a combination of design parameters of the directional control valve. The proposed value of the value of the balancing pressure drop of 0,7-0,8 MPa provides high energy efficiency of the hydraulic drive in the most critical operating mode – regulation of the hydraulic motor flow. In order to ensure the stability of the energy-efficient operation of the hydraulic drive in this mode, a research was made of the stability of transient processes with various combinations of design parameters of the overflow valve of the hydraulic control valve, as well as changes in the operating conditions of the hydraulic drive. As a result of theoretical researches, on the basis of mathematical modeling of working processes, combinations of design parameters of the hydraulic lock and the spool of the overflow valve were identified, which ensure the stability of the hydraulic drive in the mode of regulating the flow of the hydraulic motor. In particular, these are such parameters as the stiffness of the springs of the hydraulic lock and the overflow valve, the diameter and angle of inclination of the edge of the overflow valve spool, the area of the radial holes and the auxiliary choke of the overflow valve. It was also determined that in this mode, the stability of the hydraulic drive will be ensured under conditions of a load pressure of up to 20 MPa, a hydraulic motor flow rate of 100 l / min and a working fluid temperature of 80 °C.


2021 ◽  
Vol 312 ◽  
pp. 05002
Author(s):  
Paola Fresia ◽  
Massimo Rundo

The paper presents the CFD model of a load sensing directional control valve. The model was validated experimentally in terms of pressure drop and flow force at different positions of the spool. The spool position was imposed manually by means of a micrometric screw and a load cell was used for measuring the flow force. The CFD model was developed with the CAD-embedded tool FloEFD®. The model has been proved to be very reliable in estimating the pressure drop, moreover quite good results were obtained also in the evaluation of the flow force. The CFD simulations were used to tune the coefficients of a lumped parameter model of the valve, so that such a model can be efficiently used for the simulation of an entire hydraulic circuit. Moreover, the CFD model has been used as design tool for attenuating the detrimental effect of the flow force. In particular, the width of the land upstream of the metering edge has an influence on the resultant force on the spool. If was found that it is possible to significantly reduce the flow force at maximum opening with a relatively small increment of the pressure drop across the valve.


2020 ◽  
pp. 379-388
Author(s):  
Alexandru-Polifron Chirita ◽  
Marian Blejan ◽  
Teodor-Costinel Popescu ◽  
Ana-Maria Popescu

This article presents and analyses in two cases the dynamic performance of regulation and control of the linear speed of an electro-hydraulically driven mechatronic axis. In the first case, the flow control is performed with a proportional hydraulic directional control valve, while in the second case the control is performed with a servo-valve. The linear mechatronic axis is part of a complex subsystem used in both agriculture and industry that allows the precise winding of a hose / cable on a drum with the help of a spooling device, which conditions the positioning of the hose. The speed control of the hydraulic cylinder with bilateral rod on whose liner the spooling device is fixed is performed in a closed loop with the help of transducers and a programmable controller (PLC).


2020 ◽  
Vol 61 (2) ◽  
pp. 350-359
Author(s):  
Alexandru-Polifron Chirita ◽  
Marian Blejan ◽  
Teodor-Costinel Popescu ◽  
Ana-Maria Popescu

This article presents and analyses in two cases the dynamic performance of regulation and control of the linear speed of an electro-hydraulically driven mechatronic axis. In the first case, the flow control is performed with a proportional hydraulic directional control valve, while in the second case the control is performed with a servo-valve. The linear mechatronic axis is part of a complex subsystem used in both agriculture and industry, that allows the precise winding of a hose / cable on a drum with the help of a spooling device, which conditions the positioning of the hose. The speed control of the hydraulic cylinder with bilateral rod on whose liner the spooling device is fixed is performed in a closed loop with the help of transducers and a programmable controller (PLC).


Sign in / Sign up

Export Citation Format

Share Document