Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three iron ores: Effect of iron ore types on the product distribution, carbon-deposited iron ore reactivity and its mechanism

Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119398 ◽  
Author(s):  
Hongyu Zhao ◽  
Yuhuan Li ◽  
Qiang Song ◽  
Shucheng Liu ◽  
Li Ma ◽  
...  
2019 ◽  
Vol 144 ◽  
pp. 104714 ◽  
Author(s):  
Hongyu Zhao ◽  
Yuhuan Li ◽  
Qiang Song ◽  
Shucheng Liu ◽  
Qingxiang Ma ◽  
...  

2013 ◽  
Vol 701 ◽  
pp. 28-31 ◽  
Author(s):  
Rusila Zamani Abd Rashid ◽  
Hadi Purwanto ◽  
Hamzah Mohd Salleh ◽  
Mohd Hanafi Ani ◽  
Nurul Azhani Yunus ◽  
...  

This paper pertains to the reduction process of local low grade iron ore using palm kernel shell (PKS). It is well known that low grade iron ores contain high amount of gangue minerals and combined water. Biomass waste (aka agro-residues) from the palm oil industry is an attractive alternative fuel to replace coal as the source of energy in mineral processing, including for the treatment and processing of low grade iron ores. Both iron ore and PKS were mixed with minute addition of distilled water and then fabricated with average spherical diameter of 10-12mm. The green composite pellets were subjected to reduction test using an electric tube furnace. The rate of reduction increased as temperature increases up to 900 °C. The Fe content in the original ore increased almost 12% when 40 mass% of PKS was used. The reduction of 60:40 mass ratios of iron ore to PKS composite pellet produced almost 11.97 mass% of solid carbon which was dispersed uniformly on the surface of iron oxide. The aim of this work is to study carbon deposition of PKS in iron ore through reduction process. Utilization of carbon deposited in low grade iron ore is an interesting method for iron making process as this solid carbon can act as energy source in the reduction process.


2020 ◽  
Vol 201 ◽  
pp. 01026
Author(s):  
Mykola Stupnik ◽  
Vsevolod Kalinichenko ◽  
Olena Kalinichenko ◽  
Sofiia Yakovlieva

The work considers conditions of deep levels of the Underground Mine Group for underground ore mining (as underground mines) of the Mining Department of the PJSC “ArcelorMittal Kryvyi Rih” (the PJSC “ArcelorMittal Kryvyi Rih”). The research aims to improve indicators of mined ore mass extraction when mining rich iron ores through studying and optimizing consumption of explosives, enhancing mining technology to provide fulfilment of the underground iron ore mining program. During the research, there are analyzed mining geological and technical conditions of the deposit mining as well as current technologies of iron ore mining at the Underground Mine Group of the PJSC “ArcelorMittal Kryvyi Rih”. The work analyzes the achieved indices and consumption of explosives for drilling and blasting at the Underground Mine Group. The mining geological and technical conditions of the deposit mining as well as current technologies of mining, parameters of preparatory operations, the nomenclature and qualitative characteristics of many types of explosives are determined to have changed. This complicates planning consumption of explosives and making their estimates for work sites. However, this is a reason for selecting highly efficient technology and machinery in deteriorating mining and geological conditions of operating at over 1200 m depths. The work determines dependencies of a stress value on a mining depth and physical properties of rocks, as well as parameters of drilling and blasting operations considering the stress-strain state of the massif under high rock pressure at deep levels of the Mining Group of the PJSC “ArcelorMittal Kryvyi Rih”.


2015 ◽  
Vol 51 (1) ◽  
pp. 33-40 ◽  
Author(s):  
X.B. Huang ◽  
X X.W. ◽  
J.J. Song ◽  
C.G. Bai ◽  
R.D. Zhang ◽  
...  

The relative contact angle (?RCA) for seven iron ore fines was measured by using Washburn Osmotic Pressure method under laboratory conditions. By choosing cyclohexane as the reference that can perfectly wet iron ore particles, the relative contact angles were measured and varied from 57? to 73?. With the volume % of goethite (?G) as the variable, a new model for relative contact angle was developed. The expected relative contact angle for pure goethite is about 56?, while that for goethite free samples is about 77?. Physical properties, such as surface morphology (SMI) and pore volume (Vpore) can influence the relative contact angle. The ?G can be expressed as a function of SMI and VPore. Thus, we inferred that the relative contact angle is a function of ?G for the iron ores used. The measured relative contact angles were found to be in good agreement (Radj 2 >0.97) with the calculated ones based on the research from Iveson, et al. (2004). Comparing with the model developed by Iveson et al.(2004), the new model for contact angle proposed in this paper is similar, but more detailed with two meaningful physical parameters. The modification of physicochemical properties on iron ores would be another topic in the further study on granulation.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1393 ◽  
Author(s):  
Yanwei Yang ◽  
Xiaojian Hao ◽  
Lili Zhang ◽  
Long Ren

Due to the complexity of, and low accuracy in, iron ore classification, a method of Laser-Induced Breakdown Spectroscopy (LIBS) combined with machine learning is proposed. In the research, we collected LIBS spectra of 10 iron ore samples. At the beginning, principal component analysis algorithm was employed to reduce the dimensionality of spectral data, then we applied k-nearest neighbor model, neural network model, and support vector machine model to the classification. The results showed that the accuracy of three models were 82.96%, 93.33%, and 94.07% respectively. The results also demonstrated that LIBS with machine learning model exhibits an excellent classification performance. Therefore, LIBS technique combined with machine learning can achieve a rapid, precise classification of iron ores, and can provide a completely new method for iron ores’ selection in the metallurgical industry.


2020 ◽  
Vol 980 ◽  
pp. 359-367
Author(s):  
Zhong Hang Cheng ◽  
Dian Bing Zhu ◽  
Shu Juan Dai ◽  
Ahmed Sobhy

The mineral processing technology of Anshan-type iron ores has been developed in a rapid speed in recent years, and the combined flowsheet at the core of anionic reverse flotation has become a mainstream in the beneficiation of Anshan-type iron ores in china. With the successful application of this combined flowsheet, some obvious problems are also emerging. Such as high requirement of pulp temperature, complex reagent system, high cost of reagent consumption and so on. In view of this,we have carried out an experimental study on the separation of Anshan type iron ore by cationic reverse flotation . A new collector (named KBD) which is mixed amines have been developed . On this basis, the actual mineral separation experiment is carried out in the laboratory.With KBD as the collector,and starch and sodium hexametaphoshate as the depressant, has resulted in an iron concentrate of 68.16% and recovery rate of 89.71%. The determination of the electrokinetic potential and the infra-red spectroscopic analysis show that KBD can effectively and priorly adsorbed to the surface of quartz, and has greatly change the elecrtokinetic potential of quartz.The interaction of the depressing agent has increased the differences of the floatabilities in quartz and hermitite and changed the surface electric property so that the effective separation has been realized.


Sign in / Sign up

Export Citation Format

Share Document