scholarly journals Identification of Novel Graded Polarity Actin Filament Bundles in Locomoting Heart Fibroblasts: Implications for the Generation of Motile Force

1997 ◽  
Vol 136 (6) ◽  
pp. 1287-1305 ◽  
Author(s):  
Louise P. Cramer ◽  
Margaret Siebert ◽  
Timothy J. Mitchison

We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward. By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body. This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.

1996 ◽  
Vol 135 (5) ◽  
pp. 1291-1308 ◽  
Author(s):  
L G Tilney ◽  
P Connelly ◽  
S Smith ◽  
G M Guild

The actin bundles in Drosophila bristles run the length of the bristle cell and are accordingly 65 microns (microchaetes) or 400 microns (macrochaetes) in length, depending on the bristle type. Shortly after completion of bristle elongation in pupae, the actin bundles break down as the bristle surface becomes chitinized. The bundles break down in a bizarre way; it is as if each bundle is sawed transversely into pieces that average 3 microns in length. Disassembly of the actin filaments proceeds at the "sawed" surfaces. In all cases, the cuts in adjacent bundles appear in transverse register. From these images, we suspected that each actin bundle is made up of a series of shorter bundles or modules that are attached end-to-end. With fluorescent phalloidin staining and serial thin sections, we show that the modular design is present in nondegenerating bundles. Decoration of the actin filaments in adjacent bundles in the same bristle with subfragment 1 of myosin reveals that the actin filaments in every module have the same polarity. To study how modules form developmentally, we sectioned newly formed and elongating bristles. At the bristle tip are numerous tiny clusters of 6-10 filaments. These clusters become connected together more basally to form filament bundles that are poorly organized, initially, but with time become maximally cross-linked. Additional filaments are then added to the periphery of these organized bundle modules. All these observations make us aware of a new mechanism for the formation and elongation of actin filament bundles, one in which short bundles are assembled and attached end-to-end to other short bundles, as are the vertical girders between the floors of a skyscraper.


2013 ◽  
Vol 24 (23) ◽  
pp. 3710-3720 ◽  
Author(s):  
Scott D. Hansen ◽  
Adam V. Kwiatkowski ◽  
Chung-Yueh Ouyang ◽  
HongJun Liu ◽  
Sabine Pokutta ◽  
...  

The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.


1990 ◽  
Vol 110 (6) ◽  
pp. 2013-2024 ◽  
Author(s):  
R K Meyer ◽  
U Aebi

Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.


1997 ◽  
Vol 139 (2) ◽  
pp. 397-415 ◽  
Author(s):  
Tatyana M. Svitkina ◽  
Alexander B. Verkhovsky ◽  
Kyle M. McQuade ◽  
Gary G. Borisy

While the protrusive event of cell locomotion is thought to be driven by actin polymerization, the mechanism of forward translocation of the cell body is unclear. To elucidate the mechanism of cell body translocation, we analyzed the supramolecular organization of the actin–myosin II system and the dynamics of myosin II in fish epidermal keratocytes. In lamellipodia, long actin filaments formed dense networks with numerous free ends in a brushlike manner near the leading edge. Shorter actin filaments often formed T junctions with longer filaments in the brushlike area, suggesting that new filaments could be nucleated at sides of preexisting filaments or linked to them immediately after nucleation. The polarity of actin filaments was almost uniform, with barbed ends forward throughout most of the lamellipodia but mixed in arc-shaped filament bundles at the lamellipodial/cell body boundary. Myosin II formed discrete clusters of bipolar minifilaments in lamellipodia that increased in size and density towards the cell body boundary and colocalized with actin in boundary bundles. Time-lapse observation demonstrated that myosin clusters appeared in the lamellipodia and remained stationary with respect to the substratum in locomoting cells, but they exhibited retrograde flow in cells tethered in epithelioid colonies. Consequently, both in locomoting and stationary cells, myosin clusters approached the cell body boundary, where they became compressed and aligned, resulting in the formation of boundary bundles. In locomoting cells, the compression was associated with forward displacement of myosin features. These data are not consistent with either sarcomeric or polarized transport mechanisms of cell body translocation. We propose that the forward translocation of the cell body and retrograde flow in the lamellipodia are both driven by contraction of an actin–myosin network in the lamellipodial/cell body transition zone.


2000 ◽  
Vol 149 (3) ◽  
pp. 635-646 ◽  
Author(s):  
Kenneth A. Taylor ◽  
Dianne W. Taylor ◽  
Fred Schachat

We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by α-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using α-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4–0.7 μm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that α-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by α-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of α-actinin.


1992 ◽  
Vol 119 (5) ◽  
pp. 1219-1243 ◽  
Author(s):  
A K Lewis ◽  
P C Bridgman

The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.


2011 ◽  
Vol 195 (5) ◽  
pp. 721-727 ◽  
Author(s):  
Kimihide Hayakawa ◽  
Hitoshi Tatsumi ◽  
Masahiro Sokabe

Intracellular and extracellular mechanical forces affect the structure and dynamics of the actin cytoskeleton. However, the underlying molecular and biophysical mechanisms, including how mechanical forces are sensed, are largely unknown. Actin-depolymerizing factor/cofilin proteins are actin-modulating proteins that are ubiquitously distributed in eukaryotes, and they are the most likely candidate as proteins to drive stress fiber disassembly in response to changes in tension in the fiber. In this study, we propose a novel hypothesis that tension in an actin filament prevents the filament from being severed by cofilin. To test this, we placed single actin filaments under tension using optical tweezers. When a fiber was tensed, it was severed after the application of cofilin with a significantly larger delay in comparison with control filaments suspended in solution. The binding rate of cofilin to an actin bundle decreased when the bundle was tensed. These results suggest that tension in an actin filament reduces the cofilin binding, resulting in a decrease in its effective severing activity.


1982 ◽  
Vol 93 (1) ◽  
pp. 24-32 ◽  
Author(s):  
DA Begg ◽  
LI Rebhun ◽  
H Hyatt

We have investigated the relationship between the formation of actin filament bundles and the elongation of microvilli (MV) after fertilization in sea urchin eggs. In a previous study (1979, J Cell Biol. 83:241-248) we demonstrated that increased pH induced the formation of actin filaments in isolated sea urchin egg cortices with the concomitant elongation of MV. On the basis of these results we suggested that increased cytoplasmic pH after fertilization causes a reorganization of cortical actin, which in turn provides the force for MV elongation. To test this hypothesis, we compared the morphology of microvilli in eggs activated with and without the release of fertilization acid. Activation of eggs in normal sea water with the calcium ionophore A23187 causes the release of fertilization acid and the elongation of MV containing core bundles of actin filaments. Eggs activated with A23187 in NA(+)-free water do not undergo normal fertilization acid release but develop elongated, flaccid MV. These MV contain an irregular network of actin filaments rather than the parallel bundles of filaments found in normal MV. The addition of 40 mM NaCl to these eggs results in the release of H(+) and the concomitant conversion of flaccid MV to erect MV containing typical core bundles of actin filaments. Identical results are obtained when 10 mM NH(4)Cl is substituted for NaCl. The induction of cytoplasmic alkalinization in unactivated eggs with NH(4)Cl does not cause either MV elongation or the formation of actin filament bundles . These results suggest that: (a) the elongation of MV is stimulated by a rise in intracellular free Ca(++) concentration; (b) actin filament bundle formation is triggered by an increase in cytoplasmic pH; and (c) the formation of actin filament bundles is not necessary for MV elongation but is required to provide rigid support for MV.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1907-1920 ◽  
Author(s):  
Xiaojing Qian ◽  
Dolores D. Mruk ◽  
Elissa W. P. Wong ◽  
Pearl P. Y. Lie ◽  
C. Yan Cheng

Abstract In rat testes, the ectoplasmic specialization (ES) at the Sertoli-Sertoli and Sertoli-spermatid interface known as the basal ES at the blood-testis barrier and the apical ES in the adluminal compartment, respectively, is a testis-specific adherens junction. The remarkable ultrastructural feature of the ES is the actin filament bundles that sandwiched in between the cisternae of endoplasmic reticulum and apposing plasma membranes. Although these actin filament bundles undergo extensive reorganization to switch between their bundled and debundled state to facilitate blood-testis barrier restructuring and spermatid adhesion/transport, the regulatory molecules underlying these events remain unknown. Herein we report findings of an actin filament cross-linking/bundling protein palladin, which displayed restrictive spatiotemporal expression at the apical and the basal ES during the epithelial cycle. Palladin structurally interacted and colocalized with Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein) and Arp3 (actin related protein 3, which together with Arp2 form the Arp2/3 complex to induce branched actin nucleation, converting bundled actin filaments to an unbundled/branched network), illustrating its role in regulating actin filament bundle dynamics at the ES. A knockdown of palladin in Sertoli cells in vitro with an established tight junction (TJ)-permeability barrier was found to disrupt the TJ function, which was associated with a disorganization of actin filaments that affected protein distribution at the TJ. Its knockdown in vivo also perturbed F-actin organization that led to a loss of spermatid polarity and adhesion, causing defects in spermatid transport and spermiation. In summary, palladin is an actin filament regulator at the ES.


Sign in / Sign up

Export Citation Format

Share Document