scholarly journals The GTC exoplanet transit spectroscopy survey

2020 ◽  
Vol 641 ◽  
pp. A158 ◽  
Author(s):  
F. Murgas ◽  
G. Chen ◽  
L. Nortmann ◽  
E. Palle ◽  
G. Nowak

Context. One of the main atmospheric features in exoplanet atmospheres, detectable both from ground- and space-based facilities, is Rayleigh scattering. In hydrogen-dominated planetary atmospheres, Rayleigh scattering causes the measured planetary radius to increase toward blue wavelengths in the optical range. Aims. We aim to detect and improve our understanding of several features in the optical range observable in planetary atmospheres. We focus on studying transiting exoplanets that present a wide range of orbital periods, masses, radii, and irradiation from their host star. Methods. We obtained a spectrophotometric time series of one transit of the Saturn-mass planet WASP-69b using the OSIRIS instrument at the Gran Telescopio Canarias. From the data we constructed 19 spectroscopic transit light curves representing 20 nm wide wavelength bins spanning from 515 to 905 nm. We derived the transit depth for each curve individually by fitting an analytical model together with a Gaussian process to account for systematic noise in the light curves. Results. We find that the transit depth increases toward bluer wavelengths, indicative of a larger effective planet radius. Our results are consistent with space-based measurements obtained in the near infrared using the Hubble Space Telescope, which show a compatible slope of the transmission spectrum. We discuss the origin of the detected slope and argue between two possible scenarios: a Rayleigh scattering detection originating in the planet’s atmosphere or a stellar activity induced signal from the host star.

2019 ◽  
Author(s):  
Gabriele Selvaggio ◽  
Helen Preiß ◽  
Alexey Chizhik ◽  
Robert Nißler ◽  
Florian A. Mann ◽  
...  

ABSTRACTImaging of complex (biological) samples in the near infrared (nIR) range of the spectrum is beneficial due to reduced light scattering, absorption, phototoxicity and autofluorescence. However, there are only few near infrared fluorescent materials known and suitable for biomedical applications. Here, we exfoliate the layered pigment CaCuSi4O10 (known as Egyptian Blue, EB) via facile tip sonication into nanosheets (EB-NS) with ultra-high nIR fluorescence stability and brightness. The size of EB-NS can be tailored by tip sonication to diameters < 20 nm and heights down to 1 nm. EB-NS fluoresce at 910 nm and the total fluorescence intensity scales with the number of Cu2+ ions that serve as luminescent centers. Furthermore, EB-NS display no bleaching and ultra-high brightness compared to other nIR fluorophores. The versatility of EB-NS is demonstrated by in vivo single-particle tracking and microrheology measurements in developing Drosophila embryos. Additionally, we show that EB-NS can be uptaken by plants and remotely detected in a low cost stand-off detection setup despite strong plant background fluorescence. In summary, EB-NS are a highly versatile, bright, photostable and biocompatible nIR fluorescent material that has the potential for a wide range of bioimaging applications both in animal and plant systems.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1033
Author(s):  
Jianfeng Li ◽  
Yi Long ◽  
Qichao Zhao ◽  
Shupei Zheng ◽  
Zaijin Fang ◽  
...  

Transparent glass-ceramic composites embedded with Ln-fluoride nanocrystals are prepared in this work to enhance the upconversion luminescence of Tm3+. The crystalline phases, microstructures, and photoluminescence properties of samples are carefully investigated. KYb3F10 nanocrystals are proved to controllably precipitate in the glass-ceramics via the inducing of Yb3+ when the doping concentration varies from 0.5 to 1.5 mol%. Pure near-infrared upconversion emissions are observed and the emission intensities are enhanced in the glass-ceramics as compared to in the precursor glass due to the incorporation of Tm3+ into the KYb3F10 crystal structures via substitutions for Yb3+. Furthermore, KYb2F7 crystals are also nano-crystallized in the glass-ceramics when the Yb3+ concentration exceeds 2.0 mol%. The upconversion emission intensity of Tm3+ is further enhanced by seven times as Tm3+ enters the lattice sites of pure KYb2F7 nanocrystals. The designed glass ceramics provide efficient gain materials for optical applications in the biological transmission window. Moreover, the controllable nano-crystallization strategy induced by Yb3+ opens a new way for engineering a wide range of functional nanomaterials with effective incorporation of Ln3+ ions into fluoride crystal structures.


2021 ◽  
Vol 502 (3) ◽  
pp. 4112-4124
Author(s):  
Umut Burgaz ◽  
Keiichi Maeda ◽  
Belinda Kalomeni ◽  
Miho Kawabata ◽  
Masayuki Yamanaka ◽  
...  

ABSTRACT Photometric and spectroscopic observations of Type Ia supernova (SN) 2017fgc, which cover the period from −12 to + 137 d since the B-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, Δm15(B)true  = 1.10 ± 0.10 mag. Spectroscopically, it belongs to the high-velocity (HV) SNe Ia group, with the Si ii λ6355 velocity near the B-band maximum estimated to be 15 200 ± 480 km s−1. At the epochs around the near-infrared secondary peak, the R and I bands show an excess of ∼0.2-mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the colour is consistent with the fiducial SN colour. This might indicate that the excess is attributed to the bolometric luminosity, not in the colour. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1413
Author(s):  
Eshetu Bobasa ◽  
Anh Dao T. Phan ◽  
Michael Netzel ◽  
Heather E. Smyth ◽  
Yasmina Sultanbawa ◽  
...  

Kakadu plum (KP; Terminalia ferdinandiana Exell, Combretaceae) is an emergent indigenous fruit originating from Northern Australia, with valuable health and nutritional characteristics and properties (e.g., high levels of vitamin C and ellagic acid). In recent years, the utilization of handheld NIR instruments has allowed for the in situ quantification of a wide range of bioactive compounds in fruit and vegetables. The objective of this study was to evaluate the ability of a handheld NIR spectrophotometer to measure vitamin C and ellagic acid in wild harvested KP fruit samples. Whole and pureed fruit samples were collected from two locations in the Kimberley region (Western Australia, Australia) and were analysed using both reference and NIR methods. The standard error in cross validation (SECV) and the residual predictive deviation (RPD) values were 1.81% dry matter (DM) with an RPD of 2.1, and 3.8 mg g−1 DM with an RPD of 1.9 for the prediction of vitamin C and ellagic acid, respectively, in whole KP fruit. The SECV and RPD values were 1.73% DM with an RPD of 2.2, and 5.6 mg g−1 DM with an RPD of 1.3 for the prediction of vitamin C and ellagic acid, respectively, in powdered KP samples. The results of this study demonstrated the ability of a handheld NIR instrument to predict vitamin C and ellagic acid in whole and pureed KP fruit samples. Although the RPD values obtained were not considered adequate to quantify these bioactive compounds (e.g., analytical quantification), this technique can be used as a rapid tool to screen vitamin C in KP fruit samples for high and low quality vitamin C.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2197
Author(s):  
Chia-Chi Yang ◽  
Po-Ching Yang ◽  
Jia-Jin J. Chen ◽  
Yi-Horng Lai ◽  
Chia-Han Hu ◽  
...  

Since there is merit in noninvasive monitoring of muscular oxidative metabolism for near-infrared spectroscopy in a wide range of clinical scenarios, the present study attempted to evaluate the clinical usability for featuring the modulatory strategies of sternocleidomastoid muscular oxygenation using near-infrared spectroscopy in mild nonspecific neck pain patients. The muscular oxygenation variables of the dominant or affected sternocleidomastoid muscles of interest were extracted at 25% of the maximum voluntary isometric contraction from ten patients (5 males and 5 females, 23.6 ± 4.2 years) and asymptomatic individuals (6 males and 4 females, 24.0 ± 5.1 years) using near-infrared spectroscopy. Only a shorter half-deoxygenation time of oxygen saturation during a sternocleidomastoid isometric contraction was noted in patients compared to asymptomatic individuals (10.43 ± 1.79 s vs. 13.82 ± 1.42 s, p < 0.001). Even though the lack of statically significant differences in most of the muscular oxygenation variables failed to refine the definite pathogenic mechanisms underlying nonspecific neck pain, the findings of modulatory strategies of faster deoxygenation implied that near-infrared spectroscopy appears to have practical potential to provide relevant physiological information regarding muscular oxidative metabolism and constituted convincing preliminary evidences of the adaptive manipulations rather than pathological responses of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with mild disability.


2008 ◽  
Vol 591-593 ◽  
pp. 294-298
Author(s):  
Uilame Umbelino Gomes ◽  
L.A. Oliveira ◽  
S.R.S. Soares ◽  
M. Furukava ◽  
C.P. Souza

Sintered stainless steel has a wide range of applications mainly in the automotive industry. Properties such as wear resistance, density and hardness can be improved by addition of nanosized particles of refractory carbides. The present study compares the behavior of the sintering and hardness of stainless steel samples reinforced with NbC or TaC (particles size less than 20 nm) synthesized at UFRN. The main aim of this work was to identify the effect of the particle size and dispersion of different refractory carbides in the hardness and sintered microstructure. The samples were sintered in a vacuum furnace. The heating rate, sintering temperature and times were 20°C/min, 1290°C and 30, 60 min respectively. We have been able to produce compacts with a relative density among 95.0%. The hardness values obtained were 140 HV for the reinforced sample and 76 HV for the sample without reinforcement.


2021 ◽  
Author(s):  
Catarina Bianchi ◽  
Ana Marques ◽  
Rui Silva ◽  
Tomas Calmeiro ◽  
Isabel Ferreira

Abstract A new concept of oxide-metal-oxide structures that combine photothermoelectric effect with high reflectance (~80%) at wavelengths in the infrared (> 1100 nm) and high transmittance in the visible range is reported here. This was observed in optimized ITO/Ag/ITO structure, 20 nm of Siver (Ag) and 40 nm of Indium Tin Oxide (ITO), deposited on Aluminum doped Zinc Oxide (AZO) thin film. These layers show high energy saving efficiency by keeping the temperature constant inside a glazed compartment under solar radiation, but additionally they also show a photothermoelectric effect. Under uniform heating of the sample a thermoelectric effect is observed (S = 40 μV/K), but when irradiated, a potential proportional to the intensity of the radiation is also observed. Therefore, in addition to thermal control in windows, these low emission coatings can be applied as transparent photothermoelectric devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Anna Sandak ◽  
Jakub Sandak ◽  
Dominika Janiszewska ◽  
Salim Hiziroglu ◽  
Marta Petrillo ◽  
...  

The overall goal of this work was to develop a prototype expert system assisting quality control and traceability of particleboard panels on the production floor. Four different types of particleboards manufactured at the laboratory scale and in industrial plants were evaluated. The material differed in terms of panel type, composition, and adhesive system. NIR spectroscopy was employed as a pioneer tool for the development of a two-level expert system suitable for classification and traceability of investigated samples. A portable, commercially available NIR spectrometer was used for nondestructive measurements of particleboard panels. Twenty-five batches of particleboards, each containing at least three independent replicas, was used for the original system development and assessment of its performance. Four alternative chemometric methods (PLS-DA, kNN, SIMCA, and SVM) were used for spectroscopic data classification. The models were developed for panel recognition at two levels differing in terms of their generality. In the first stage, four among twenty-four tested combinations resulted in 100% correct classification. Discrimination precision with PLS-DA and SVMC was high (>99%), even without any spectra preprocessing. SNV preprocessed spectra and SVMC algorithm were used at the second stage for panel batch classification. Panels manufactured by two producers were 100% correctly classified, industrial panels produced by different manufacturing plants were classified with 98.9% success, and the experimental panels manufactured in the laboratory were classified with 63.7% success. Implementation of NIR spectroscopy for wood-based product traceability and quality control may have a great impact due to the high versatility of the production and wide range of particleboards utilization.


Sign in / Sign up

Export Citation Format

Share Document