clot strength
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Lukas Infanger ◽  
Christoph Dibiasi ◽  
Eva Schaden ◽  
Stefan Ulbing ◽  
Marion Wiegele ◽  
...  

Background: Viscoelastic coagulation testing has been suggested to help manage coagulopathy in critically ill patients with COVID-19. However, results from different viscoelastic devices are not readily comparable. ClotPro® is a novel thromboelastometry analyzer offering a wider range of commercially available assays.Methods: We compared the results from ClotPro with results from the well-established ROTEM® Delta device and conventional coagulation tests in critically ill patients with COVID-19.Results: Viscoelastic parameters indicated the presence of a potentially hypercoagulable state in the majority of patients. In up to 95 paired measurements, we found strong correlations between several parameters routinely used in clinical practice: (i) EX test vs. EXTEM CT, A5, A10, MCF, (ii) IN test vs. INTEM A5, A10, MCF, and (iii) FIB test vs. FIBTEM A5, A10, MCF (all R > 0.7 and p < 0.001). In contrast, IN test CT vs. INTEM CT showed only a moderate correlation (R = 0.53 and p < 0.001). Clot strength parameters of both devices exhibited strong correlations with platelet counts and fibrinogen levels (all R > 0.7 and p < 0.001). Divergent correlations of intrinsically activated assays with aPTT and anti-factor Xa activity were visible. Regarding absolute differences of test results, considerable delta occurred in CT, CFT, and clot strength parameters (all p < 0.001) between both devices.Conclusions: Several parameters obtained by ClotPro show strong correlations with ROTEM Delta. Due to weak correlations of intrinsically activated clotting times and considerable absolute differences in a number of parameters, our findings underline the need for device-specific algorithms in this patient cohort.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Marie Louise Honoré ◽  
Tina Holberg Pihl ◽  
Lise Nikolic Nielsen

Abstract Background Critically ill horses, such as horses with gastrointestinal (GI) disease, often suffer from hemostatic aberrations. Global hemostatic tests examining the initiation of coagulation, clot strength and fibrinolysis, such as the Calibrated Automated Thrombogram (CAT) and plasma-thromboelastography (TEG) have not been evaluated in horses. This study aimed to evaluate CAT and apply plasma-TEG in horses. Test performance of CAT was evaluated on equine platelet poor plasma with intra- and inter-assay variability (CV) and a heparin dilution curve. To examine clinical performance of both tests, group comparisons were assessed comparing healthy horses, horses with mild and severe GI disease with both CAT and plasma-TEG. Results For CAT, intra- and inter-assay CVs were established for lag-time (1.7, 4.7%), endogenous thrombin potential (1.6, 4.6%), peak (2.6, 3.9%) and time to peak (ttPeak) (1.9, 3.4%). Increasing heparin concentrations led to the expected decrease in thrombin generation. In the group comparison analysis, CAT showed significant higher peak (p = 0.04) and ttPeak (p = 0.008) in the severe GI disease group compared to horses with mild GI disease and healthy horses, respectively. Plasma-TEG showed an increased angle (p = 0.032), maximum amplitude (p = 0.017) and shear elastic force (G) (p = 0.017) in the severe GI disease group compared to healthy horses. Conclusions CAT performed well in horses. Both CAT and plasma-TEG identified hemostatic aberrations in horses with severe GI disease compared to healthy horses. Further studies including more horses, are needed to fully appreciate the use of CAT and plasma-TEG in this species.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Colette Neethling ◽  
Gregory Calligaro ◽  
Malcolm Miller ◽  
Jessica J. S. Opie

Abstract Background Few studies detail the evolution of COVID-19 associated coagulopathy. We performed serial thromboelastography (TEG) and laboratory coagulation studies in 40 critically-ill, mechanically ventilated COVID-19 patients over a 14-day period and analysed differences between 30-day survivors and non-survivors. Methods Single-center prospective, observational study including 40 patients with severe COVID-19 pneumonia admitted to the intensive care unit (ICU) for mechanical ventilation. TEG analysis was performed on days 1, 7 and 14 of ICU admission and laboratory coagulation studies were performed on days 1 and 14. Coagulation variables were evaluated for change over the 14-day observation period. Differences between survivors and non-survivors at 30-days were analysed and compared. Results On admission, TEG maximum amplitude (MA) with heparinase correction was above the upper limit of the reference range in 32 (80%) patients while 33 (82.5%) presented with absent clot lysis at 30 min. The functional fibrinogen MA was also elevated above the upper limit of the reference range in 37 (92.5%) patients. All patients had elevated D-dimer and fibrinogen levels, mildly prolonged prothrombin times (PT), normal platelet counts and normal activated partial thromboplastin times (aPTT). The heparinase MA decreased significantly with time and normalised after 14 days (p = < 0.001) while the increased fibrin contribution to clot strength persisted with time (p = 0.113). No significant differences in TEG analysis were noted between 30-day survivors and non-survivors at all time points. No patients developed disseminated intravascular coagulopathy (DIC) after 14-days, however thrombosis and bleeding were each reported in 3 (7.5%) patients. Conclusion Critically-ill patients with COVID-19 present in a hypercoagulable state characterised by an increased clot strength. This state normalises after 14 days despite a persistently increased fibrin contribution to clot strength. We were unable to demonstrate any significant differences in TEG parameters between 30-day survivors and non-survivors at all time points.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yinping Guo ◽  
Yi Zhang ◽  
Jing Zhao ◽  
Lingshan Wu ◽  
Zhiyuan Yu ◽  
...  

Objectives: Diabetes mellitus (DM) is a significant risk factor for ischemic stroke and associated with platelet reactivity. We aim to evaluate the effect of DM on platelet function in acute ischemic stroke patients taking dual antiplatelet therapy (DAPT).Methods: We consecutively included patients with acute ischemic stroke taking DAPT. Platelet function was assessed by thromboelastography and the arachidonic acid (AA) or adenosine diphosphate (ADP) induced platelet inhibition rate were used to confirmed the high-residual on-treatment platelet reactivity (HRPR) to aspirin or clopidogrel. We classified patients into DM and non-DM groups. The association between DM and platelet function was assessed and the confounding factors were adjusted by propensity score matching (PSM) analysis. The independent risk factors of HRPR were determined by multivariate logistic regression analysis.Results: A total of 1,071 acute ischemic stroke patients, 712 in the non-DM group and 359 in the DM group, were included. Patients with DM had a significantly higher maximum amplitude (63.0 vs. 62.0 mm, P &lt; 0.01), ADP-induced clot strength (34.6 vs. 30.3 mm, P &lt; 0.01) and clopidogrel HRPR rate (22.6% vs. 17.3%, P = 0.038) than those without DM. Among 662 patients after PSM, the maximum amplitude (63.1 vs. 62.5 mm, P = 0.032), ADP-induced clot strength (34.6 vs. 29.3 mm, P &lt; 0.01) and clopidogrel HRPR rate (23.0% vs. 15.7%, P = 0.018) is still higher in the DM group. DM was an independent factor of clopidogrel HRPR (OR = 1.48, 95% CI: 1.03–2.07, P &lt; 0.05).Conclusions: In acute ischemic stroke patients taking DAPT, DM is associated with increased platelet reactivity and higher prevalence of clopidogrel HRPR.


Author(s):  
Yun Wang ◽  
Jianhua Mao ◽  
Li Li ◽  
Bing Xiao ◽  
Zheng Ruan ◽  
...  

AbstractPlatelet-targeted FVIII gene therapy can efficiently recover bleeding phenotype for hemophilia A (HA), yet characteristics of thrombus formation with this ectopic expression of factor VIII (FVIII) in platelets remain unclear. Here, we generated 2bF8trans mice restrictively expressing human B-domain–deleted FVIII (hBDD FVIII) in platelets on a hemophilic (FVIIInull) mice background. The results showed no statistical difference in clot strength and stability between wild-type (WT) and 2bF8trans mice, but with a prolonged reaction time (R-time), by thromboelastography. Fluid dynamics analysis showed that at the shear rates of 500 to 1,500 s−1, where physiological hemostasis often develops, the thrombi formed in 2bF8trans mice were more stable than those in FVIIInull mice, while at high pathological shear rates (2,500 s−1), mimicking atherosclerosis, thrombus size and fibrin deposition in 2bF8trans mice were less than those in WT mice. Thrombus morphology analysis showed that there was a locally concentrated deposition of fibrin in thrombus at the injured site and fibrin co-localized with activated platelets in 2bF8trans mice. Moreover, a higher ratio of fibrin to platelets was found in thrombus from 2bF8trans mice following laser-induced injury in cremaster arterioles, which might be the underlying mechanism of thrombus stability in 2bF8trans mice at physiological arterial circumstance. These observations suggest that specific morphological features of the thrombi might contribute to the efficacy and safety of platelet-targeted FVIII gene therapy for HA.


2021 ◽  
Vol 10 (15) ◽  
pp. 3397
Author(s):  
Andreas G. Tsantes ◽  
Dimitrios V. Papadopoulos ◽  
Ioannis G. Trikoupis ◽  
Stavros Goumenos ◽  
Daniele Piovani ◽  
...  

Introduction: Coronavirus disease 2019 (COVID-19) in patients with hip fractures is associated with increased incidence of venous thromboembolism (VTE). The purpose of this study was to evaluate the hemostatic alterations of COVID-19 that are associated with a higher thrombotic risk using rotational thromboelastometry (ROTEM). Methods: A retrospective observational study was performed including 20 COVID-19 patients with hip fractures. To compare the coagulopathy of patients with mild COVID-19 and hip fractures with the coagulopathy associated with each of these two conditions separately, we used two previously recruited groups of patients; 198 hip fracture patients without COVID-19 and 21 COVID-19 patients without hip fractures. The demographics, clinical parameters, conventional coagulation parameters and ROTEM findings of the three groups were analyzed and compared. Results: COVID-19 hip fracture patients had higher amplitude of clot firmness at 10 min (p < 0.001), higher alpha angle (p < 0.001), higher lysis index at 60 min (p < 0.001), and shorter clot formation time (p < 0.001) than non-COVID-19 hip fracture patients, indicating increased clot strength and impaired fibrinolysis due to COVID-19. The value of lysis index at 60 min (99%) in COVID-19 patients with hip fractures was consistent with fibrinolysis shut down. Multivariable linear regression analysis further confirmed that COVID-19 resulted in increased amplitude of clot firmness at 10 min (p < 0.001), increased maximum clot firmness (p < 0.001), increased lysis index at 60 min (p < 0.001) and increased alpha angle (p < 0.001), but significantly shortened clot formation time (p < 0.001). Discussion: The higher thrombotic risk in COVID-19 patients with hip fractures is characterized by increased clot strength and fibrinolysis shutdown, as shown by ROTEM findings. Further prospective studies are warranted to evaluate the need for modification of thromboprophylaxis to balance the hemostatic derangements of COVID-19 patients with hip fractures.


2021 ◽  
Vol 64 (3) ◽  
pp. E324-E329
Author(s):  
Daniel You ◽  
Leslie Skeith ◽  
Robert Korley ◽  
Paul Cantle ◽  
Adrienne Lee ◽  
...  

Background: Venous thromboembolism (VTE) is the second most common complication after hip fracture surgery. We used thrombelastography (TEG), a whole-blood, point-of-care test that can provide an overview of the clotting process, to determine the duration of hypercoagulability after hip fracture surgery. Methods: In this prospective study, consecutive patients aged 51 years or more with hip fractures (trochanteric region or neck) amenable to surgical treatment who presented to the emergency department were eligible for enrolment. Thrombelastography, including calculation of the coagulation index (CI) (combination of 4 TEG parameters for an overall assessment of coagulation) was performed daily from admission until 5 days postoperatively, and at 2 and 6 weeks postoperatively. All patients received 28 days of thromboprophylaxis. We used single-sample t tests to compare mean maximal amplitude (MA) values (a measure of clot strength) to the hypercoagulable threshold of greater than 65 mm, a predictor of in-hospital VTE. Results: Of the 35 patients enrolled, 11 (31%) were hypercoagulable on admission based on an MA value greater than 65 mm, and 29 (83%) were hypercoagulable based on a CI value greater than 3.0; the corresponding values at 6 weeks were 23 (66%) and 34 (97%). All patients had an MA value greater than 65 mm at 2 weeks. Patients demonstrated normal coagulation on admission (mean MA value 62.2 mm [standard deviation (SD) 6.3 mm], p = 0.01) but became significantly hypercoagulable at 2 weeks (mean 71.6 mm [SD 2.6 mm], p < 0.001). There was a trend toward persistent hypercoagulability at 6 weeks (mean MA value 66.2 mm [SD 3.8 mm], p = 0.06). Conclusion: More than 50% of patients remained hypercoagulable 6 weeks after fracture despite thromboprophylaxis. Thrombelastography MA thresholds or a change in MA over time may help predict VTE risk; however, further study is needed.


BJS Open ◽  
2021 ◽  
Vol 5 (2) ◽  
Author(s):  
A E Pusateri ◽  
T D Le ◽  
J W Keyloun ◽  
L T Moffatt ◽  
T Orfeo ◽  
...  

Abstract Introduction Abnormal fibrinolysis early after injury has been associated with increased mortality in trauma patients, but no studies have addressed patients with burn injury. This prospective cohort study aimed to characterize fibrinolytic phenotypes in burn patients and to see if they were associated with mortality. Methods Patients presenting to a regional burn centre within 4 h of thermal injury were included. Blood was collected for sequential viscoelastic measurements using thromboelastography (RapidTEG™) over 12 h. The percentage decrease in clot strength 30 min after the time of maximal clot strength (LY30) was used to categorize patients into hypofibrinolytic/fibrinolytic shutdown (SD), physiological (PHYS) and hyperfibrinolytic (HF) phenotypes. Injury characteristics, demographics and outcomes were compared. Results Of 115 included patients, just over two thirds were male. Overall median age was 40 (i.q.r. 28–57) years and median total body surface area (TBSA) burn was 13 (i.q.r. 6–30) per cent. Some 42 (36.5 per cent) patients had severe burns affecting over 20 per cent TBSA. Overall mortality was 18.3 per cent. At admission 60.0 per cent were PHYS, 30.4 per cent were SD and 9.6 per cent HF. HF was associated with increased risk of mortality on admission (odds ratio 12.61 (95 per cent c.i. 1.12 to 142.57); P = 0.041) but not later during the admission when its incidence also decreased. Admission SD was not associated with mortality, but incidence increased and by 4 h and beyond, SD was associated with increased mortality, compared with PHYS (odds ratio 8.27 (95 per cent c.i. 1.16 to 58.95); P = 0.034). Discussion Early abnormal fibrinolytic function is associated with mortality in burn patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 2185
Author(s):  
Gael B. Morrow ◽  
Molly S. A. Carlier ◽  
Sruti Dasgupta ◽  
Fiona B. Craigen ◽  
Nicola J. Mutch ◽  
...  

Fibrinogen is the first coagulation protein to reach critically low levels during traumatic haemorrhage. There have been no differential effects on clinical outcomes between the two main sources of fibrinogen replacement: cryoprecipitate and fibrinogen concentrate (Fg-C). However, the constituents of these sources are very different. The aim of this study was to determine whether these give rise to any differences in clot stability that may occur during trauma haemorrhage. Fibrinogen deficient plasma (FDP) was spiked with fibrinogen from cryoprecipitate or Fg-C. A panel of coagulation factors, rotational thromboelastography (ROTEM), thrombin generation (TG), clot lysis and confocal microscopy were performed to measure clot strength and stability. Increasing concentrations of fibrinogen from Fg-C or cryoprecipitate added to FDP strongly correlated with Clauss fibrinogen, demonstrating good recovery of fibrinogen (r2 = 0.99). A marked increase in Factor VIII, XIII and α2-antiplasmin was observed in cryoprecipitate (p < 0.05). Increasing concentrations of fibrinogen from both sources were strongly correlated with ROTEM parameters (r2 = 0.78–0.98). Cryoprecipitate therapy improved TG potential, increased fibrinolytic resistance and formed more homogeneous fibrin clots, compared to Fg-C. In summary, our data indicate that cryoprecipitate may be a superior source of fibrinogen to successfully control bleeding in trauma coagulopathy. However, these different products require evaluation in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document