oscillator output
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Erik Clark

Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an ‘oscillator’, a ‘switch’ and up to three ‘timers’, successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.


2020 ◽  
Author(s):  
Erik Clark

AbstractArthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include (1) the mechanistic origins of spatial organisation within the segment addition zone (SAZ); (2) the mechanistic origins of segment polarisation; (3) the mechanistic origins of axial variation; and (4) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an “oscillator”, a “switch”, and up to three “timers”, successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns, and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarising oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.


2020 ◽  
Vol 10 (6) ◽  
pp. 2105
Author(s):  
Masoud Baghaei ◽  
Josep M. Bergada

The number of applications where fluidic oscillators are expected to be used in the future, is raising sharply, then their ability of interacting with the boundary layer to modify forces on bluff bodies, enhancing heat transfer or decreasing noise generation, are just few of the applications where fluidic oscillators can be used. For each application a particular pulsating frequency and amplitude are required to minimize/maximize the variable under study, force, Nusselt number, etc. For a given range of Reynolds numbers, fluidic oscillators present a linear relationship between the output frequency and the incoming fluid flow, yet it appears the modification of the internal fluidic oscillator geometry may affect this relation. In the present paper and for a given fluidic oscillator, several performance parameters will be numerically evaluated as a function of different internal modifications via using 3D-CFD simulations. The paper is also evaluating the relation between the momentum applied to the mixing chamber incoming jet and the oscillator output characteristics. The evaluation is based on studying the output mass flow frequency and amplitude whenever several internal geometry parameters are modified. The geometry modifications considered were: the mixing chamber inlet and outlet widths, and the mixing chamber inlet and outlet wall inclination angles. The concept behind this paper is, to evaluate how much the fluidic oscillator internal dimensions affect the device main characteristics, and to analyze which parts of the oscillator produce a higher impact on the fluidic oscillator output characteristics. For the different internal modifications evaluated, special care is taken in studying the forces required to flip the jet. The entire study is performed for three different Reynolds numbers, 8711, 16034 and 32068. Among the conclusions reached it is to be highlighted that, for a given Reynolds number, modifying the internal shape affects the oscillation frequencies and amplitudes. Any oscillator internal modification generates a much relevant effect as Reynolds number increases. Under all conditions studied, it was observed the fluidic oscillator is pressure driven.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1164 ◽  
Author(s):  
zhao ◽  
Zhu ◽  
Guo ◽  
Cong ◽  
Tee ◽  
...  

This study describes the design of a resonant tunneling diode (RTD) oscillator (RTD oscillator) with a RTD-gated-graphene-2DEF (two dimensional electron fluid) and demonstrates the functioning of this RTD oscillator through a transmission line simulation model. Impedance of the RTD oscillator changes periodically when physical dimension of the device is of considerable fraction of the electrical wavelength. As long as impedance matching is achieved, the oscillation frequency is not limited by the size of the device. An RTD oscillator with a graphene film and negative differential resistance (NDR) will produce power amplification. The positive electrode of the DC power supply is modified and designed as an antenna. So, the reflected power can also be radiated to increase RTD oscillator output power. The output analysis shows that through the optimization of the antenna structure, it is possible to increase the RTD oscillator output to 22 mW at 1.9 THz and 20 mW at 6.1 THz respectively. Furthermore, the RTD oscillator has the potential to oscillate at 50 THz with a matching antenna.


2016 ◽  
Vol 33 (2) ◽  
pp. 87-93
Author(s):  
Deepa George ◽  
Saurabh Sinha

Purpose The demand for higher bandwidth has resulted in the development of mm-wave phased array systems. This paper aims to explore a technique that could be used to feed the individual antennas in a mm-wave phased array system with the appropriate phase shifted signal to achieve the required directivity. It presents differential Colpitts oscillators at 5 and 60 GHz that can provide differential output signals to the quadrature signal generators in the proposed phase shifter system. Design/methodology/approach The phase shifter system comprises a differential Colpitts voltage controlled oscillator (VCO) and utilizes the vector-sum technique to generate the phase shifted signal. The differential VCO is connected in the common-collector configuration for the 5-GHz VCO, and is extended using a cascode transistor for the 60-GHz VCO for better stability at mm-wave. The vector sum is achieved using a variable gain amplifier (VGA) that combines the in-phase and quadrature phase signal, generated from oscillator output using hybrid Lange couplers. The devices were fabricated using IBM 130-nm SiGe BiCMOS process, and simulations were performed with a process design kit provided by the foundry. Findings The measured results of the 5-GHz and 60-GHz VCOs indicate that differential Colpitts VCO could generate oscillator output with good phase noise performance. The simulation results of the phase shifter system indicate that the generation of signals with phases from 0° to 360° in steps of 22.5° was achieved using the proposed approach. A Gilbert mixer topology was used for the VGA and the linearity was improved by a pre-distortion circuit implemented using an inverse tanh cell. Originality/value The measurement results indicate that differential Colpitts oscillator in common-collector configuration could be used to generate differential VCO signals for the vector-sum phase shifter. The simulation results of the proposed phase shifter system at mm-wave show that the phase shift could be realised at a total power consumption of 200 mW.


2014 ◽  
Vol 618 ◽  
pp. 558-562
Author(s):  
Chen Xu ◽  
Xiang Ning Fan ◽  
Zai Jun Hua ◽  
Zhou Yu

Voltage controlled oscillator has been used in every field of the electronics industry, and plays an indispensable role. In the fractional divider, in order to reduce the product size, voltage controlled ring oscillator is used to meet the design requirements, at the same time as much as possible to reduce the area. The design of wide tuning voltage-controlled ring oscillator was designed with the reference voltage source. This design not only could reduce the error brought by the external voltage reference, and was also very good realization structure innovation in the film. This design used 0.5 μ m CMOS Hua technology. The post simulation results show: when the coarse voltage and fine voltage are respectively 1V and 2V, voltage waveform oscillator output swing is 2.4V; when the coarse voltage and fine voltage are respectively 1.13V and 2V, voltage waveform oscillator output swing is 2.8V; when the coarse voltage and fine voltage are respectively 1.3V and 2V, voltage waveform oscillator output swing is 3V. After simulations, the frequency range of the voltage-controlled ring oscillator adjustment is 100 ~ 200MHz.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Rajeshwari Pandey ◽  
Neeta Pandey ◽  
Sajal K. Paul

This paper presents a voltage mode pulse width modulator (PWM) using single operational transresistance amplifier (OTRA). The proposed PWM consists of a relaxation oscillator output which is modulated using modulating signal. PSPICE simulation results and experimental results have been included to verify the theoretical analysis.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
J. P. Dada ◽  
J. C. Chedjou ◽  
S. Domngang

We show a technique for external direct current (DC) control of the amplitudes of limit cycles both in the Phase-shift and Twin-T oscillators. We have found that amplitudes of the oscillator output voltage depend on the DC control voltage. By varying the total impedance of each oscillator oscillatory network, frequencies of oscillations are controlled using potentiometers. The main advantage of the proposed circuits is that both the amplitude and frequency of the waveforms generated can be independently controlled. Analytical, numerical, and experimental methods are used to determine the boundaries of the states of the oscillators. Equilibrium points, stable limit cycles, and divergent states are found. Analytical results are compared with the numerical and experimental solutions, and a good agreement is obtained.


Sign in / Sign up

Export Citation Format

Share Document