scholarly journals Experimental Study on the Law of Energy Dissipation and Damage in Coal Body Based on Local Tensile-Sliding Effect

Author(s):  
Xiangfeng Lv ◽  
Xinyue Li ◽  
Yishan Pan

Abstract The slippage initiation and induced instability of roadway surrounding rock are highly likely to cause dynamic disasters, severely influencing the safety production of mining. With the optical-mechanical monitoring test of the deformation localization of energy dissipation, this study established the optical index of coal deformation equilibrium degree under load, and obtained the evolution law of coal deformation equilibrium degree. After analyzing the relationship between tensile-sliding effect and mechanical behavior of coal deformation field, it proposed the strain energy ratio coefficient. The results indicate that the strength reduction of coal body is affected by the deformation accumulation of loading displacement field. The sliding displacement of the stable sliding type specimen occurs 5.5s earlier than tensile displacement,which is 4.4s longer than the instantaneous instability type specimen. The instability type of coal is closely related to the tangent angle of the strain energy ratio coefficient and the damage persistence characteristics. The damage accumulation of stable equal amplitude contributes to the stable failure, and the damage accumulation of interval equal amplitude influences the instantaneous instability development. The fracture expansion stage is the main stage of energy consumption damage accumulation. That is, the main energy consumption damage accumulation stage of the stable slip coal is the stable crack expansion stage, with the damage proportion of 35.89%, while the damage proportion of instantaneous instability coal in the unsteady crack expansion stage is 84.226%. The study provides theoretical reference for the fracture law and risk monitoring of coal slippage.

1998 ◽  
Vol 4 (4) ◽  
pp. 280-282
Author(s):  
Petras Baradokas

The paper discusses the problem of evaluating vibration energy dissipation of a composite material. It is suggested to express the dissipation cofficient in a line (2). The reduced component dissipation coefficients c i φi are the members of the line. The ratio of reduction c i , shows the proportion by which a separate component adds to the energy dissipation of the entire composition. By analysing the accumulated and dissipated strain energy of a composite material were obtained (6). On the basis of these expressions, formulas for calculating the dissipation coefficients of a three-layer bar and that with a galvanic covering were devised. The analysis made leads to the following conclusions: - the vibration energy dissipation coefficient of a composite material is equal to the sum of the reduced dissipation coefficients of the composition component materials; - the ratio of reduction c i depends on the value of the component accumulated energy; - for comparing separate components as to the energy dissipation, the product φ i E i should be used.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950073
Author(s):  
Lei Huang ◽  
De-Yong Guan ◽  
Xin-Hong Qiang

Traffic flow dynamics and energy consumption differs under dissimilar weather conditions, while seldom investigations have been conducted with a cellular automata model. In this paper, the friction coefficient between ground and tire is considered as the quantitative label of weather, a dynamic safe gap based on friction coefficient to avoid rear-end crash is introduced. We developed a safer one-dimensional model to examine the kinetic energy consumption under different weathers. Numerical results show that previous models overestimated the kinetic energy consumption in medium density flow (density [Formula: see text]0.5). In medium flow, speed limit will not reduce energy consumption on rainy and snowy days in most cases, but is necessary for prevention of accidents. Inversely, the effect of speed control on energy consumption is obvious under extreme weather. Our work can promote a better understanding of traffic dynamics, reduce energy dissipation and be applied to real traffic management.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881990 ◽  
Author(s):  
Hui-Yong Guo ◽  
He-Fa Yuan ◽  
Qi Huang

It is difficult for the traditional methods to identify uncertain damage problems caused by noise. Therefore, a gray cloud rule generator algorithm based on cloud model and modal strain energy is presented to solve the problems. Cloud model can simulate both randomness and fuzziness with fixed parameters. Therefore, it is applicable for the uncertain damage problems. First, modal strain energy and modal strain energy dissipation ratio index are introduced. Then, numerical characteristics of a cloud model are described and some cloud generators are analyzed. Finally, a gray cloud rule is proposed and the gray cloud rule generator algorithm based on the gray cloud rule generator and modal strain energy is developed. The interference of uncertain noise is reduced through a large number of cloud droplets. A two-dimensional truss structure model has been used to verify the effectiveness of the algorithm. The results indicate that the proposed gray cloud rule generator algorithm is applicable to identify the uncertain damage caused by noise, and the identification results of the proposed method are relatively better than those of modal strain energy dissipation ratio index.


2013 ◽  
Vol 361-363 ◽  
pp. 2304-2307
Author(s):  
Rui Ling Yu

The additional energy consumption model of vehicles on a gradient road is introduced in this paper. The numerical simulation of the model shows that the additional energy consumption varies with the different slope. Larger solpe means less additional energy loss on a uphhill road while it is the contrary tendency on the downhill road. The analysis of the simulation result is consistent with the actual.


2019 ◽  
Vol 6 (4) ◽  
pp. 181965 ◽  
Author(s):  
Jia Suizi ◽  
Cao Wanlin ◽  
Liu Zibin

This study developed a low-energy consumption composite wall structure constructed with a pre-fabricated lightweight steel frame that is suitable for houses in villages and towns and evaluated its anti-seismic performance. A low-reversed cyclic-loading test was conducted on four full-scale pre-fabricated structure specimens, including a lightweight, concrete-filled steel tube (CFST) column frame specimen (abbreviated as SFCF), a lightweight CFST column frame composite wall specimen (abbreviated as SFCFW), an H-steel column frame specimen (abbreviated as HSCF) and an H-steel column frame composite wall specimen (abbreviated as HSCFW). The failure characteristics, hysteretic behaviour, strength, rigidity, ductility and energy dissipation capacity of each specimen were compared and analysed. The results demonstrated that the pre-fabricated, double L-shaped beam–column joint with a stiffener rib which was proposed in this study worked reliably and exhibited good anti-seismic performance. The yield, ultimate and frame yield loads of the specimen SFCFW were 1.72, 1.80 and 2.03 times higher than those of specimen SFCF. The yield load, ultimate load and frame yield loads of specimen HSCFW were 1.27, 1.68 and 1.82 times higher than those of specimen HSCF. This indicates that the embedded composite wall contributed significantly to the horizontal bearing capacities of the SFCF and HSCF specimens. The embedded composite wall was divided into multiple strip-shaped composite panels during failure and achieved a stable support for the frame in the later stages of elastoplastic deformation. The horizontal strips of the tongue-and-groove connection between the strip-shaped composite panels produced reciprocating bite displacements, and ultimately improved the structure's energy dissipation capacity significantly.


2019 ◽  
Vol 37 (4) ◽  
pp. 3183-3192 ◽  
Author(s):  
Yuan Chang ◽  
Zhonghui Chen ◽  
Fuqiang Ren ◽  
Laishan Chang

2014 ◽  
Vol 496-500 ◽  
pp. 881-886
Author(s):  
Min Zhang ◽  
Hong Kun Wang ◽  
Xue Song Qian

This paper mainly introduces three types of hydraulic energy-dissipation dampers, which adopts the damping hole, relief valve, and relief throttle valve, and the structures, operation principles and energy dissipation mechanisms in detail. Using AMESim to analyze the performance parameters comparatively, it can be concluded that the hydraulic damper adopting relief valve has strong capability of energy consumption and effectively ensures the safety of engineering structures.


2014 ◽  
Vol 14 (07) ◽  
pp. 1450028 ◽  
Author(s):  
Hui Yong Guo ◽  
Zheng Liang Li

In order to solve structural multi-damage identification problems, a damage detection method based on modal strain energy equivalence index (MSEEI) is presented. First, an accurate expression of modal strain energy (MSE) before and after damage occurs is given. Then, according to the energy equivalence theory that the change in MSE caused by the damage should be equivalent to the energy dissipation caused by the same damage, an energy equivalence equation is deduced. Finally, four roots of the energy equivalence equation are found and a MSEEI is obtained from the four roots. Simulation results demonstrate that the proposed MSEEI method can identify structural damage locations and extent with good accuracy. Identification precision of the proposed method is clearly better than that of the modal strain energy dissipation ratio index (MSEDRI) method.


Sign in / Sign up

Export Citation Format

Share Document