scholarly journals Prospects for the development of geothermal energy supply

2021 ◽  
pp. 27-37
Author(s):  
V.A. Stennikov ◽  
S. Batmunkh ◽  
P.A. Sokolov

The paper addresses methodological and technological issues of building environmentally friendly and efficient energy supply based on geothermal energy sources. Geothermal potential in the world, accentuating that in Russia (areas of the Baikal natural territory) and Mongolia, is analyzed considering the possibility of its implementation in the thermal power industry. Geothermal areas of Central Mongolia are characterized by increased heat flows and occurrences of thermal waters. The most promising thermal spring occurrences are the Shivert, Shargalzhuut, Tsenkher, Otgontenger, and Khuzhirt, to name some of them. Currently, the thermal energy potential of the Khangai arched uplift in Central Mongolia is employed to heat industrial, agricultural, and civil facilities. There are also plans to consider the possibility of large-scale employment of thermal waters of the region for electricity generation. An example of using geothermal waters for electricity generation is given, and the possibility of establishing a heating system in the city of Tsetserleg based on a geothermal heat pump unit with a wind power plant is assessed.

2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


Author(s):  
Talip Arsu

Electricity generation, one of the renewable energy sources (RES), delivers a solution for various problems such as energy efficiency, energy supply security, reducing foreign dependency, and especially, environmental concerns. However, the solutions provided for these problems bring along the question of which RESs are produced more effectively. Therefore, in this research, RESs used for electricity generation in Turkey were analyzed by using generation data to show which one is more effective. Bi-objective multiple-criteria data envelopment analysis (BiO-MCDEA) method, a goal programming-based efficiency determination method, was used for the efficiency analysis conducted for five years between the years of 2014 and 2018. As a result of the analysis, geothermal energy came into prominence as the most effective RES for all of the years included in the solution. Geothermal energy was followed by biomass energy, wind energy, hydroelectric, and solar energy, respectively.


2020 ◽  
Vol 8 (3) ◽  
pp. 211-222
Author(s):  
Britta Klagge ◽  
Clemens Greiner ◽  
David Greven ◽  
Chigozie Nweke-Eze

Based on a study of Kenya’s geothermal-energy development in Baringo-Silali, we explore how and with whom government actors and local communities in rural and peripheral areas interact when planning and implementing large-scale power plants. Starting from a comparison of decentralized and centralized energy systems, we demonstrate that the development of this large-scale infrastructure project and the associated investor-community relations are governed by various cross-scale linkages. To this end, we adapt the concept of cross-scale linkages from the literature on natural-resource governance to explore actors, rules, and practices at local, regional, national, and international levels.


2021 ◽  
Vol 242 ◽  
pp. 01003
Author(s):  
Md. Sakib Hossain ◽  
Soad Shajid

Electricity generation using solar thermal power systems can be made more efficient and both technically and economically feasible in countries receiving moderate solar radiation like Bangladesh through thorough optimization of different parts of the power plant. In this paper a theoretical and mathematical framework for optimization of a 150 MW solar tower thermal power plant in Bangladesh which uses molten salt as HTF has been developed by applying different methods of selecting crucial design aspects, such as design point DNI, solar multiple, design point temperature etc. after selecting the most appropriate location based on GHI and DNI data. The effect of these design aspects on the overall design of the power plant including the number of heliostats, solar field land area, tower height, receiver dimensions etc. have also been studied and finally the performance analysis of the power plant has been conducted. Analysis of performance reveals that the optimized power plant would be able to deliver 528.66 GW-h electricity annually to the national grid while operating at a capacity factor of 40.2% and gross-net conversion efficiency of 88.635%. The promising performance of the power plant would encourage further research and innovation regarding large scale electricity generation from solar energy in Bangladesh.


2013 ◽  
Vol 47 (4) ◽  
pp. 2111 ◽  
Author(s):  
R. G. Oskay ◽  
H. Inaner ◽  
A. I. Karayigit ◽  
K. Christanis

In the last two decades electricity generation and consumption in Turkey was increasing steadily. Around 80% of the electricity generated is derived from fossil fuels such as imported natural gas and oil, and domestic coal. As the energy policy now is focusing on reducing the dependency on imported fuels, coal, particularly this of low-rank, is becoming important for the country. Latest explorations showed that total coal reserves of Turkey reach to 13 Gt with low-rank coals (i.e. lignite and sub-bituminous) being dominant. Coal deposits, formed under various conditions and in various geological times, are widely spread over the territory. The most significant deposits are of Tertiary, especially Neogene age. Neogene coals are most appropriate for combustion in the thermal power plants due to the high total reserves despite the high ash yields and the low calorific values. We imply that applying reasonable exploitation planning and appropriate washing techniques, coal will play a key role in future energy supply of the country.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Al- Amin ◽  
Al- Amin ◽  
Al- Amin

This paper discusses and analyzes the economics for total cost investment to produce electricity from different sources like Geothermal Energy, Wind Energy, Hydro, Nuclear, Solar, etc. Renewable energy is the focus of this study since it is both affordable and a superior solution than non-renewable energy. The world's nonrenewable energy supply is running out, and prices are rising rapidly. As a result, the use of renewable energy sources is steadily growing. The total installed cost of different sources from 2007-2019 is driven clearly in this paper. An overall discussion on electricity generation is also included in this paper.


Author(s):  
Phan Nguyen Vinh ◽  
Bach Hoang Dinh ◽  
Van-Duc Phan ◽  
Hung Duc Nguyen ◽  
Thang Trung Nguyen

Wind power plants (WPs) play a very important role in the power systems because thermal power plants (TPs) suffers from shortcomings of expensive cost and limited fossil fuels. As compared to other renewable energies, WPs are more effective because it can produce electricity all a day from the morning to the evening. Consequently, this paper integrates the optimal power generation of TPs and WPs to absolutely exploit the energy from WPs and reduce the total electricity generation cost of TPs. The target can be reached by employing a proposed method, called one evaluation-based cuckoo search algorithm (OEB-CSA), which is developed from cuckoo search algorithm (CSA). In addition, conventional particle swarm optimization (PSO) is also implemented for comparison. Two test systems with thirty TPs considering prohibited working zone and power reserve constraints are employed. The first system has one wind power plant (WP) while the second one has two WPs. The result comparisons indicate that OEB-CSA can be the best method for the combined systems with WPs and TPs.


2021 ◽  
Vol 18 (3) ◽  
pp. 174-183
Author(s):  
K.R. Kamil ◽  
A.O. Yusuf ◽  
S.A. Yakubu ◽  
S.B. Seriki

Majority of electricity generation in Nigeria comes from fossil fuels, with about two-thirds of thermal power derived from natural gas and the rest from oil, resulting in the emission of carbon dioxide (𝐶𝑂2). With the prevailing global climate change, shifting to renewable energy would reduce the greenhouse gas emission which would be the salvaging option to help our degrading environment. The aim of the resource’s hybridization process is to generate enough electricity that would help the supplementing for the inadequate electricity supply in the local province at the least detrimental effect on the environment. This work discusses the renewable energy potential of Nigeria and raises the possibility of having Nigeria electricity grid powered by small, medium and large-scale renewable energy systems. The hybridised power generation system simulations were done using HOMER simulation software. The hybridisation of the resources was able to generate 149,313 kWh/yr to adequately sustain the estimated electrical load of 126,027kWh/yr. Conclusively, cost effectiveness of the individual and hybridised systems was also considered.


2005 ◽  
Vol 85 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Mirjana Gajic ◽  
Snezana Vujadinovic

The geothermal waters in Debrc are in karstified Triassic limestone and dolomite. Maximal measured temperature is 58?C on the depth of 1000 m. By using geothermal energy from thermal waters of Debrc, is possible intensive agri and aqva culture production, especially organic food according to world ecologic standards, as well as toplification of Debrc.


2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Adetona Tayo Fatigun ◽  
Ebenezer Babatope Faweya ◽  
Funmilola Olusola Ogunlana ◽  
Taiwo Hassan Akande

In this study, the wind electricity generation potential and energy cost at Ikeja were investigated using 31 years wind speed data obtained from Nigeria Meteorological Agency. The study addresses the challenges of inadequate electricity supply and the development of alternative source of electricity. The measured data, captured at 10m height were subjected to 2-parameter Weibull and other statistical analysis. Weibull analysis of wind speed showed good fit between actual data and Weibull predicted data confirming the adequacy of the model. The value of wind speed at 10m height ranged between 3.47m/s and 5.33m/s with annual average of 4.5m/s. Also, the Wind Power Density (WPD) ranged between 116.3 W/m² and 423.3W/m² with annual average value of 257.85W/m². The mean electric power outputs from the model turbines varied between 11KW and 290KW while its Capacity Factor (CF) ranged between 13.8% and 0.36%. Also, the generation cost per kilowatt-hour varied between $0.11 and $2.39 annually. Therefore, the wind energy potential at Ikeja could be adjudged marginal and belonging to wind power class 2. The generation cost of wind electricity is cost-effective in the months of April and August while cost-deficit in the remaining months of the year. The location is considered suitable for small to medium scale wind power generation, but economically infeasible for large scale grid connected wind electricity generation.


Sign in / Sign up

Export Citation Format

Share Document