scholarly journals Observing intermittent biological productivity and vertical carbon transports during the spring transition with BGC Argo floats in the western North Pacific

2022 ◽  
Author(s):  
Chiho Sukigara ◽  
Ryuichiro Inoue ◽  
Kanako Sato ◽  
Yoshihisa Mino ◽  
Takeyoshi Nagai ◽  
...  

Abstract. To investigate changes in ocean structure during the spring transition and responses of biological activity, two BGC-Argo floats equipped with oxygen, fluorescence (to estimate chlorophyll a concentration – Chl a), backscatter (to estimate particulate organic carbon concentration – [POC]), and nitrate sensors conducted daily vertical profiles of the water column from a depth of 2000 m to the sea surface in the western North Pacific from January to April of 2018. Data for calibrating each sensor were obtained via shipboard sampling that occurred when the floats were deployed and recovered. During the float-deployment periods, repeated meteorological disturbances passed over the study area and caused the mixed layer to deepen. After deep-mixing events, the upper layer restratified and nitrate concentrations decreased while Chl a and POC concentrations increased, suggesting that spring mixing events promote primary productivity through the temporary alleviation of nutrient and light limitation. At the end of March, POC accumulation rates and nitrate decrease rates within the euphotic zone (0–70 m) were the largest of the four events observed, ranging from +84 to +210 mmol C m−2 d−1 and –28 to –49 mmol N m−2 d−1, respectively. The subsurface consumption rate of oxygen (i.e., the degradation rate of organic matter) after the fourth event (the end of March) was estimated to be –0.62 micromol O2 kg−1 d−1. At depths of 300–400 m (below the mixed layer), the POC concentrations increased slightly throughout the observation period. The POC flux at a depth of 300 m was estimated to be 1.1 mmol C m−2 d−1. Our float observation has made it possible to observed biogeochemical parameters, which previously could only be estimated by shipboard observation and experiments, in the field and in real time.

2021 ◽  
Author(s):  
Chiho Sukigara ◽  
Ryuichiro Inoue ◽  
Kanako Sato ◽  
Yoshihisa Mino ◽  
Takeyoshi Nagai ◽  
...  

Abstract. Two Argo floats equipped with oxygen, chlorophyll (Chl), backscatter, and nitrate sensors conducted daily vertical profiles of the water column from a depth of 2000 m to the sea surface in the western North Pacific from January to April of 2018. Data for calibrating each sensor were obtained via shipboard sampling that occurred when the floats were deployed and recovered. Float backscatter observations were converted to particulate organic carbon (POC) concentrations using an empirical relationship derived from contemporaneous float profiles of backscatter and shipboard observations of suspended organic carbon particles. During the float deployment periods, repeated meteorological disturbances (storms) passed over the study area and caused the mixed layer to deepen. During these events, nitrate was entrained from deeper layers into the surface mixed layer, while Chl and POC in the surface mixed layer were redistributed into deeper layers. After the storms, the upper layer gradually restratified, nitrate concentrations in the surface layer decreased, and Chl and POC concentrations increased. When the floats observed the same water mass, the net community production within the euphotic layer (0–70 m), determined from the increases in POC, was 126–664 mg C m−2 d−1 (10.5–55.3 mmol C m−2 d−1) close to the values reported from a nearby area. The C/N ratio of the increase in POC and the decrease in nitrate was closed to the Redfield ratio, which indicates that the sensors were able to observe the net biochemical processes in this area despite the relatively low concentrations of nitrate and POC. To determine the fate of particles transported from the surface ocean to the twilight layer, the ratio of oxygen consumption and nitrate regeneration rates were compared. This O2/N ratio approached the Redfield ratio when the floats followed the same water mass continuously, but the consumption rate of POC was significantly lower than what would be expected based on the oxygen consumption and nitrate release rates. This suggests that dissolved organic carbon was the main substrate for the respiration in the twilight layer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sing-how Tuo ◽  
Margaret R. Mulholland ◽  
Yukiko Taniuchi ◽  
Houng-Yung Chen ◽  
Wann-Neng Jane ◽  
...  

Calothrix rhizosoleniae and Richelia intracellularis are heterocystous cyanobacteria found in the tropical oceans. C. rhizosoleniae commonly live epiphytically on diatom genera Chaetoceros (C-C) and Bacteriastrum (B-C) while R. intracellularis live endosymbiotically within Rhizosolenia (R-R), Guinardia (G-R), and Hemiaulus (H-R); although, they occasionally live freely (FL-C and FL-R). Both species have much shorter trichomes than the other marine filamentous cyanobacteria such as Trichodesmium spp. and Anabaena gerdii. We investigated the trichome lengths of C. rhizosoleniae and R. intracellularis in the South China Sea (SCS) and the Philippine Sea (PS) between 2006 and 2014. On average, H-R had the shortest trichome lengths (3.5 cells/trichome), followed by B-C and C-C (4.9–5.2 cells/trichome) and FL-C (5.9 cells/trichome), and R-R, G-R, and FL-R had the longest trichome lengths (7.4–8.3 cells/trichome). Field results showed the trichome lengths of C-C and B-C did not vary seasonally or regionally. However, FL-C and H-R from the SCS and during the cool season had longer trichomes, where/when the ambient nutrient concentrations were higher. R-R, G-R, and FL-R also showed regional and seasonal variations in trichome length. Ultrastructural analysis found no gas vesicles within the C. rhizosoleniae cells to assist in buoyancy regulation. Results suggest that the trichome lengths of C. rhizosoleniae and R. intracellularis might be regulated by their diatom hosts’ symbiotic styles and by ambient nutrients. Short trichome length might help C. rhizosoleniae and R. intracellularis to stay in the euphotic zone regardless as to whether they are free-living or symbiotic.


2009 ◽  
Vol 137 (11) ◽  
pp. 3744-3757 ◽  
Author(s):  
I-I. Lin ◽  
Iam-Fei Pun ◽  
Chun-Chieh Wu

Abstract Using new in situ ocean subsurface observations from the Argo floats, best-track typhoon data from the U.S. Joint Typhoon Warning Center, an ocean mixed layer model, and other supporting datasets, this work systematically explores the interrelationships between translation speed, the ocean’s subsurface condition [characterized by the depth of the 26°C isotherm (D26) and upper-ocean heat content (UOHC)], a cyclone’s self-induced ocean cooling negative feedback, and air–sea enthalpy fluxes for the intensification of the western North Pacific category 5 typhoons. Based on a 10-yr analysis, it is found that for intensification to category 5, in addition to the warm sea surface temperature generally around 29°C, the required subsurface D26 and UOHC depend greatly on a cyclone’s translation speed. It is observed that even over a relatively shallow subsurface warm layer of D26 ∼ 60–70 m and UOHC ∼ 65–70 kJ cm−2, it is still possible to have a sufficient enthalpy flux to intensify the storm to category 5, provided that the storm can be fast moving (typically Uh ∼ 7–8 m s−1). On the contrary, a much deeper subsurface layer is needed for slow-moving typhoons. For example at Uh ∼ 2–3 m s−1, D26 and UOHC are typically ∼115–140 m and ∼115–125 kJ cm−2, respectively. A new concept named the affordable minimum translation speed Uh_min is proposed. This is the minimum required speed a storm needs to travel for its intensification to category 5, given the observed D26 and UOHC. Using more than 3000 Argo in situ profiles, a series of mixed layer numerical experiments are conducted to quantify the relationship between D26, UOHC, and Uh_min. Clear negative linear relationships with correlation coefficients R = −0.87 (−0.71) are obtained as Uh_min = −0.065 × D26 + 11.1, and Uh_min = −0.05 × UOHC + 9.4, respectively. These relationships can thus be used as a guide to predict the minimum speed a storm has to travel at for intensification to category 5, given the observed D26 and UOHC.


2004 ◽  
Vol 31 (11) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yuko Ohno ◽  
Taiyo Kobayashi ◽  
Naoto Iwasaka ◽  
Toshio Suga

2020 ◽  
Author(s):  
Taavi Liblik ◽  
Germo Väli ◽  
Inga Lips ◽  
Madis-Jaak Lilover ◽  
Villu Kikas ◽  
...  

Abstract. Stratification plays an essential role in the marine system. The shallow mixed layer is one of the preconditions for the enhanced primary production in the ocean. The general understanding is that the mixed layer is well deeper than the euphotic zone in the Baltic Sea during winter. In this work, we demonstrate the wintertime stratification is a common phenomenon in the Gulf of Finland. Shallow haline stratification at the depth comparable to the euphotic zone depth forms in late January–early February. Stratification is evoked by the positive buoyancy flux created by the westward advection of riverine water along the northern coast of the gulf. Fresher water and haline stratification appeared approximately one month later in the southern part of the gulf. The phenomena can occur in the whole gulf and also without ice. Chl a concentration and phytoplankton biomass in winter can be comparable to mid-summer. The limiting factor for phytoplankton bloom in winter is likely insufficient solar radiation.


2018 ◽  
Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime drawdown of dissolved inorganic carbon in the absence of measurable nutrients from the mixed layer and subsurface negative preformed nitrate (preNO3) anomalies observed for the ocean's subtropical gyres are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute including biological nitrogen fixation, lateral nutrient transport, carbon overconsumption or non-Redfield C : N : P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. Here we investigate the seasonal formation rates and potential contributing mechanisms for negative preformed nitrate anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA in the North Pacific and BATS in the North Atlantic. Non-Redfield −O2 : N stoichiometry for dissolved organic matter (DOM) remineralization is found to account for up to ~ 15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ~ 32–46 mmol N m−2 yr−1 at station ALOHA and ~ 46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. Cycling of transparent exopolymer particles (TEP) and heterotrophic nitrate uptake can contribute to the formation of these preNO3 anomalies, however a significant fraction, estimated at ~ 50–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary nutrient acquisition strategy and biogeochemical signature to quantitatively explain both the residual negative and positive preNO3 anomalies as well as the mixed layer dissolved inorganic carbon drawdown at stations ALOHA and BATS. TEP production by the model Rhizosolenia mat system could provide accelerated vertical transport of TEP as well as link the three processes together. Phytoplankton vertical migrators, although rare and easily overlooked, may play a large role in subtropical ocean nutrient cycling and the biological pump.


Sign in / Sign up

Export Citation Format

Share Document