rolling temperatures
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1654
Author(s):  
Huizhong Li ◽  
Liangming Cao ◽  
Xiaopeng Liang ◽  
Wending Zhang ◽  
Chunping Wu ◽  
...  

The effect of rolling temperatures on the interface microstructure and mechanical properties is investigated using 2-mm-thick TA1/Q235B composite sheets, which were prepared after nine passes of hot rolling of explosive welded plates. The results show that the vortex region and the transition layer exist in the interface at the explosive welded plate, while only the transition layer exists in the interface after hot rolling. The transition layer is composed of α-Ti, TiC, Fe, and FeTi, and the thickness increases with the increasing rolling temperature. The microhardness of the explosive welded plate is higher than that of the hot-rolling sheet, and the microhardness of interface are higher than that of matrix metals. The interface shear strength and tensile elongation of the hot-rolled sheet increase with the increasing hot rolling temperature, while the ultimate tensile strength (UTS), yield strength (YS) and Young modulus decrease with the increase of hot rolling temperature. The shear strength of sheets is related to the interfacial compounds, and the tensile strength is mainly affected by the grain morphology of the matrix.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5070 ◽  
Author(s):  
Jiří Svoboda ◽  
Natália Luptáková ◽  
Milan Jarý ◽  
Petr Dymáček

The coarse-grained new-generation Fe-Al-Y2O3-based oxide dispersion strengthened (ODS) alloys contain 5 vol.% homogeneously dispersed yttria nano-precipitates and exhibit very promising creep and oxidation resistance above 1000 °C. The alloy is prepared by the consolidation of mechanically alloyed powders via hot rolling followed by secondary recrystallization. The paper presents a systematic study of influence of rolling temperature on final microstructure and creep at 1100 °C for two grades (Fe-10Al-4Y2O3 and Fe-9Al-14Cr-4Y2O3 in wt%) of new-generation ODS alloys. The hot rolling temperatures exhibit a rather wide processing window and the influence of Cr-alloying on creep properties is evaluated as only slightly positive.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Kandarp Changela ◽  
H. B. Naik ◽  
K. P. Desai ◽  
H. K. Raval

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 294
Author(s):  
Stoja Rešković ◽  
Ljerka Slokar Benić ◽  
Martina Lovrenić-Jugović

In this paper, thermomechanical processing of niobium microalloyed steel was performed with the purpose of determining the interaction between niobium precipitates and dislocations, as well as determining the influence of the temperature of final deformation on the degree of precipitation and dislocation density. Two variants of thermomechanical processing with different final rolling temperatures were carried out. Samples were studied using electrochemical isolation with an atomic absorption spectrometer, transmission electron microscopy, X-ray diffraction analysis, and universal tensile testing with a thermographic camera. The results show that the increase in the density of dislocations before the onset of intense precipitation is insignificant because the recrystallization process takes place simultaneously. It increases with the onset of strain-induced precipitation. In this paper, it is shown that niobium precipitates determine the density of dislocations. The appearance of Lüders bands was noticed as a consequence of the interaction between niobium precipitates and dislocations during the subsequent cold deformation. In both variants of the industrial process performed on the cold deformed strip, Lüders bands appeared.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3933 ◽  
Author(s):  
Xi Sun ◽  
Peng Huang ◽  
Xiaoguang Zhang ◽  
Nanding Han ◽  
Jinqin Lei ◽  
...  

The effect of rolling temperature on the precursor of aluminum foam sandwich (AFS) prepared by powder metallurgy through Pack Rolling method is investigated in this work. The cross-section along rolling direction of the precursors was observed. It was found that periodic corrugated morphology with micro-cracks on the composite interface as well as cracks and micro-holes among core powder particles emerged abundantly at room temperature rolling. These defects degraded with increasing rolling temperature and completely disappeared when the rolling temperature reached 400 °C. Combining with foaming ability of these precursors, the densification mechanism of core powders was discussed. Powder particles deformed with difficulty at low rolling temperature; the gap between them cannot be effectively filled through their plastic deformation. Fracture occurred in powder core layer during co-extension with the outer panel and was partly embedded by it, resulting in corrugated composite morphology at the interface. The precursors of high density and excellent bonding interface were prepared at the rolling temperature of 400 °C. A more suitable foaming condition was determined.


2019 ◽  
Vol 49 (6) ◽  
pp. 384-389 ◽  
Author(s):  
A. A. Umanskii ◽  
A. V. Golovatenko ◽  
A. S. Simachev ◽  
V. V. Dorofeev ◽  
T. N. Oskolkova
Keyword(s):  

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 350 ◽  
Author(s):  
Jaakko Hannula ◽  
David Porter ◽  
Antti Kaijalainen ◽  
Mahesh Somani ◽  
Jukka Kömi

The direct quenching process is an energy- and resource-efficient process for making high-strength structural steels with good toughness, weldability, and bendability. This paper presents the results of an investigation into the effect of molybdenum and niobium on the microstructures and mechanical properties of laboratory rolled and direct-quenched 11 mm thick steel plates containing 0.16 wt.% C. Three of the studied compositions were niobium-free, having molybdenum contents of 0 wt.%, 0.25 wt.%, and 0.5 wt.%. In addition, a composition containing 0.25 wt.% molybdenum and 0.04 wt.% niobium was studied. Prior to direct quenching, finish rolling temperatures (FRTs) of about 800 °C and 900 °C were used to obtain different levels of austenite pancaking. The final direct-quenched microstructures were martensitic and yield strengths varied in the range of 766–1119 MPa. Mo and Nb additions led to a refined martensitic microstructure that resulted in a good combination of strength and toughness. Furthermore, Mo and Nb alloying significantly reduced the amount of strain-induced ferrite in the microstructure at lower FRTs (800 °C). The steel with 0.5 wt.% Mo exhibited a high yield strength of 1119 MPa combined with very low 28 J transition temperature of −95 °C in the as-quenched condition. Improved mechanical properties of Mo and Mo–Nb steels can be attributed to the improved boron protection. Also, the crystallographic texture of the investigated steels showed that Nb and Nb–Mo alloying increased the amount of {112}<131> and {554}<225> texture components. The 0Mo steel also contained the texture components of {110}<110> and {011}<100>, which can be considered to be detrimental for impact toughness properties.


Sign in / Sign up

Export Citation Format

Share Document