core powder
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1389
Author(s):  
David Svetlizky ◽  
Noam Eliaz

Additive manufacturing (AM), for example, directed energy deposition (DED), may allow the processing of self-healing metal–matrix composites (SHMMCs). The sealing of cracks in these SHMMCs would be achieved via the melting of micro-encapsulated low melting point particulates (LMPPs), incorporated into the material during AM, by heat treatment of the part during service. Zn-Al alloys are good candidates to serve as LMPPs, for example, when the matrix of the MMC is made of an aluminum alloy. However, such powders should first be encapsulated by a thermal and diffusion barrier. Here, we propose a sol–gel process for encapsulation of a custom-made ZA-8 (Zn92Al8, wt.%) core powder in a ceramic alumina (Al2O3) shell. We first modify the surface of the ZA-8 powder with (12-phosphonododecyl)phosphonic acid (Di-PA) hydrophobic self-assembled monolayer (SAM) in order to prevent extensive hydrogen evolution and formation of non-uniform and porous oxide/hydroxide surface layers during the sol–gel process. Calcination for 1 h at 500 °C is found to be insufficient for complete boehmite-to-γ(Al2O3) phase transformation. Thermal stability tests in an air-atmosphere furnace at 600 °C for 1 h result in melting, distortion, and sintering into a brittle sponge (aggregate) of the as-atomized powder. In contrast, the core/shell powder is not sintered and preserves its spherical morphology, with no apparent “leaks” of the ZA-8 core alloy out of the ceramic encapsulation.


2021 ◽  
Author(s):  
Xuan Huan Nguyen ◽  
Thi Thuy Pham ◽  
Thi Thanh Huyen Dang ◽  
Thi Ngoc Lan Pham ◽  
Thuy Anh Tran ◽  
...  

Abstract With the increasing wastewater generation from domestic and industrial activities due to the rapid economic development, the generation of sludge, in particular dredged sludge from municipal sewer system, has been an issue in developing countries. This study evaluated the enhancement of sewer’s sludge dewatering via mixing the sludge with different agro-wastes, including corn core powder, rice husk powder, bagasse powder and peanut shell powder. The addition of these agro-waste powders helped decrease the sludge’s moisture contents up to 17% after mixing with the ratio of 1:3, 1:5 or 1:7. Statistical analysis revealed the impacts of both additive types and mixing ratio on moisture content reduction. Among the four types of agro-waste, rice husk was shown to be the best additive to dredge sludges with highest reduction of heavy metal concentration and moisture content. The addition of agro-waste powders to enhance the dewatering of sludges is quite promising in the context of promoting waste reuse and energy saving.


Author(s):  
FuLin Yang

AbstractThe objective of this study is to experimentally evaluate a new acid combination of HEDP: CH3COOH as a retarded acid to minimize some limitations of high-temperature sandstone acidizing, such as fast acid-rock reaction and secondary precipitation pipeline corrosion. In this work, the acid–base titration, core-powder solubility test, scale deposition test, corrosion rate measurement and corefloods were carried out to evaluate the performances of the acid combination, including acidity characteristics, retarded performance, preventing scale rate, corrosivity and improving permeability. And then the microstructure and mineral content in sandstone samples were observed and analyzed with SEM–EDS. The results of evaluation tests indicated that the new acid combination has excellent performances on retarded rate, preventing scale deposition, permeability enhancement and lower corrosivity, comparing with conventional mud acid. The results of SEM and EDS showed that the microstructure and mineral content of sandstone changed after acid treatment. Compared with mud acid, the new acid system can react more with small particles on sandstone surface and less with the skeleton of samples and the decrease in the contents of Mg, Al, Na, K, Ca and Fe is relatively lower.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2999
Author(s):  
Małgorzata Gazińska ◽  
Anna Krokos ◽  
Bartłomiej Kryszak ◽  
Paulina Dzienny ◽  
Michał Olejarczyk ◽  
...  

We present a comparison of the influence of the conditioning temperature of microspheres made of medical grade poly(L-lactide) (PLLA) and polylactide with 4 wt % of D-lactide content (PLA) on the thermal and structural properties. The microspheres were fabricated using the solid-in-oil-in-water method for applications in additive manufacturing. The microspheres were annealed below the glass transition temperature (Tg), above Tg but below the onset of cold crystallization, and at two temperatures selected from the range of cold crystallization corresponding to the crystallization of the α’ and α form of poly(L-lactide), i.e., at 40, 70, 90, and 120 °C, in order to verify the influence of the conditioning temperature on the sinterability of the microspheres set as the sintering window (SW). Based on differential scanning calorimetry measurements, the SWs of the microspheres were evaluated with consideration of the existence of cold crystallization and reorganization of crystal polymorphs. The results indicated that the conditioning temperature influenced the availability and range of the SWs depending on the D-lactide presence. We postulate the need for an individual approach for polylactide powders in determining the SW as a temperature range free of any thermal events. We also characterized other core powder characteristics, such as the residual solvent content, morphology, particle size distribution, powder flowability, and thermal conductivity, as key properties for successful laser sintering. The microspheres were close to spheres, and the size of the microspheres was below 100 µm. The residual solvent content decreased with the increase of the annealing temperature. The thermal conductivities were 0.073 and 0.064 W/mK for PLA and PLLA microspheres, respectively, and this depended on the spherical shape of the microspheres. The wide angle X-ray diffraction (WAXD) studies proved that an increase in the conditioning temperature caused a slight increase in the crystallinity degree for PLLA microspheres and a clear increase in crystallization for the PLA microspheres.


Author(s):  
Małgorzata Gazińska ◽  
Anna Krokos ◽  
Bartłomiej Kryszak ◽  
Paulina Dzienny ◽  
Michał Olejarczyk ◽  
...  

Comparison of the influence of conditioning temperature of microspheres made of medical grade poly(L-lactide) (PLLA) and polylactide with 4wt.% of D-lactide content (PLA), on its thermal and structural properties is presented. The microspheres were fabricated by solid-in-oil-in-water method for application in additive manufacturing. The microspheres were annealed below glass transition temperature (Tg), above Tg but below onset of cold crystallization, and at two temperatures selected from the range of cold crystallization corresponding to crystallization of α’ and α form of poly(L-lactide) respectively, i.e., at 40°C, 70°C, 90°C and 120°C, in order to verify the influence of conditioning temperatures on sinterability of microspheres set as sintering window (SW). Based on differential scanning calorimetry measurements SW of microspheres were evaluated with consideration of existence of cold crystallization and reorganization of crystal polymorph. The results indicate that the conditioning temperature influence on availability and range of SW that depending on the D-lactide presence. We postulate the need for an individual approach for polylactide powders in determining the SW as a temperature range free of any thermal events. Moreover, other core powder characteristic, such as residual solvent content, morphology, particle size distribution, powder flowability and thermal conductivity, as a key property for successful laser sintering, are characterized. The microspheres are close to sphere and the size of microspheres are below 100 µm. Residual solvents content decreases with the increase of annealing temperature. The thermal conductivity is 0.073 W/mK and 0.064 W/mK for PLA and PLLA microspheres, respectively, and it depends on the spherical shape of the microspheres. Furthermore, the WAXD studies prove that an increase in the conditioning temperature causes a slight increase in crystallinity degree for PLLA microspheres and clear increase in crystallization for PLA microspheres.


Author(s):  
A. Karthiayani ◽  
M. Udaya Ganga ◽  
C. Ashok Kumar

Background: Despite the fondness for noodles, consumers in India hold the notion that noodles are being made from maida which is seen as product with low fiber. Hence an attempt was made to develop fiber enriched noodles by incorporating banana pseudo-stem tender core powder (BPP) as a fiber source.Methods: BPP was incorporated at different levels viz., 5, 10 and 15% in which 5% was found to be the best based on cooking characteristics and sensory evaluation. The noodles thus prepared were packed in flexible polyethylene pouches and stored at room temperature and were further analyzed for physicochemical, cooking, sensory and colour characteristics at regular intervals of 60 days till 180 days of storage. Result: All the analysis showed the non-significant difference during the storage period stating that the product is good till 180 days of storage. The dietary fiber was found to increase from 3.35 to 4.74% and in vitro method of glycemic index (GI) analysis showed that the fiber noodle was a low GI food when compared to the medium GI of control. The MUFA and PUFA content of BPP noodles were increased when compared to control. 


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3933 ◽  
Author(s):  
Xi Sun ◽  
Peng Huang ◽  
Xiaoguang Zhang ◽  
Nanding Han ◽  
Jinqin Lei ◽  
...  

The effect of rolling temperature on the precursor of aluminum foam sandwich (AFS) prepared by powder metallurgy through Pack Rolling method is investigated in this work. The cross-section along rolling direction of the precursors was observed. It was found that periodic corrugated morphology with micro-cracks on the composite interface as well as cracks and micro-holes among core powder particles emerged abundantly at room temperature rolling. These defects degraded with increasing rolling temperature and completely disappeared when the rolling temperature reached 400 °C. Combining with foaming ability of these precursors, the densification mechanism of core powders was discussed. Powder particles deformed with difficulty at low rolling temperature; the gap between them cannot be effectively filled through their plastic deformation. Fracture occurred in powder core layer during co-extension with the outer panel and was partly embedded by it, resulting in corrugated composite morphology at the interface. The precursors of high density and excellent bonding interface were prepared at the rolling temperature of 400 °C. A more suitable foaming condition was determined.


Sign in / Sign up

Export Citation Format

Share Document