scholarly journals Analysis and Synthesis of Electrocardiogram (ECG) using Fourier and Wavelet Transform

Electrocardiogram (ECG) is the study of the electrical signals of the human heart that are generated by the pumping action of the heart caused by the polarization and depolarization of the nodes of the heart. These signals must be interpreted with great accuracy and efficiency as they are paramount in prognosis and subsequent diagnosis of the condition of the patient. The goal of this project is to analyze the ECG signals following Fourier and Wavelet transforms, and to highlight and demonstrate the advantages of the Wavelet transform. Firstly, it involves simulating the temporal digital ECG signal and explaining the signal constituents, i.e., P, Q, R, S, T waves while staying in the time domain. Secondly, the ECG signal will be transferred into the frequency domain for quick, fast, and compressed analysis and carry out signal processing using Fourier analysis and highlight the pros and cons of this technique. Thirdly, wavelet analysis will be explored and demonstrated to mitigate the shortcoming of the former tool, i.e., Fourier. At this stage, various ECG signals, mimicking abnormalities, will be analyzed. This work will highlight the effectiveness of wavelet analysis as a tool to examine ECG signals. This work, hence, will entail, comparison of both transformation methods by utilizing the computational power of MATLAB.

Author(s):  
CHUANG-CHIEN CHIU ◽  
CHOU-MIN CHUANG ◽  
CHIH-YU HSU

The main purpose of this study is to present a novel personal authentication approach with the electrocardiogram (ECG) signal. The electrocardiogram is a recording of the electrical activity of the heart and the recorded signals can be used for individual verification because ECG signals of one person are never the same as those of others. The discrete wavelet transform was applied for extracting features that are the wavelet coefficients derived from digitized signals sampled from one-lead ECG signal. By the proposed approach applied on 35 normal subjects and 10 arrhythmia patients, the verification rate was 100% for normal subjects and 81% for arrhythmia patients. Furthermore, the performance of the ECG verification system was evaluated by the false acceptance rate (FAR) and false rejection rate (FRR). The FAR was 0.83% and FRR was 0.86% for a database containing only 35 normal subjects. When 10 arrhythmia patients were added into the database, FAR was 12.50% and FRR was 5.11%. The experimental results demonstrated that the proposed approach worked well for normal subjects. For this reason, it can be concluded that ECG used as a biometric measure for personal identity verification is feasible.


The ECG (electrocardiography) which reports heart electrical action is capable to supply with valuable data almost the sort of cardiac disarranges endured by the patient based on the fluctuations obtained from the ECG signal design. In this paper, we considered noisy ECG signals [MIT-BIH database] and their different wavelet scalograms. Wavelet analysis performed in the ECG signals with continuous wavelet transforms and it has allowed to graphically identifying scalograms energy two-dimensional characteristics of the heartbeat QRS complex.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongpo Zhang ◽  
Renke He ◽  
Honghua Dai ◽  
Mingliang Xu ◽  
Zongmin Wang

Atrial fibrillation is the most common arrhythmia and is associated with high morbidity and mortality from stroke, heart failure, myocardial infarction, and cerebral thrombosis. Effective and rapid detection of atrial fibrillation is critical to reducing morbidity and mortality in patients. Screening atrial fibrillation quickly and efficiently remains a challenging task. In this paper, we propose SS-SWT and SI-CNN: an atrial fibrillation detection framework for the time-frequency ECG signal. First, specific-scale stationary wavelet transform (SS-SWT) is used to decompose a 5-s ECG signal into 8 scales. We select specific scales of coefficients as valid time-frequency features and abandon the other coefficients. The selected coefficients are fed to the scale-independent convolutional neural network (SI-CNN) as a two-dimensional (2D) matrix. In SI-CNN, a convolution kernel specifically for the time-frequency characteristics of ECG signals is designed. During the convolution process, the independence between each scale of coefficient is preserved, and the time domain and the frequency domain characteristics of the ECG signal are effectively extracted, and finally the atrial fibrillation signal is quickly and accurately identified. In this study, experiments are performed using the MIT-BIH AFDB data in 5-s data segments. We achieve 99.03% sensitivity, 99.35% specificity, and 99.23% overall accuracy. The SS-SWT and SI-CNN we propose simplify the feature extraction step, effectively extracts the features of ECG, and reduces the feature redundancy that may be caused by wavelet transform. The results shows that the method can effectively detect atrial fibrillation signals and has potential in clinical application.


Heart and Eye are two vital organs in the human system. By knowing the Electrocardiogram (ECG) and Electro-oculogram (EOG), one will be able to tell the stability of the heart and eye respectively. In this project, we have developed a circuit to pick the ECG and EOG signal using two wet electrodes. Here no reference electrode is used. EOG and ECG signals have been acquired from ten healthy subjects. The ECG signal is obtained from two positions, namely wrist and arm position respectively. The picked-up biomedical signal is recorded and heart rate information is extracted from ECG signal using the biomedical workbench. The result found to be promising and acquired stable EOG and ECG signal from the subjects. The total gain required for the arm position is higher than the wrist position for the ECG signal. The total gain necessary for the EOG signal is higher than the ECG signal since the ECG signal is in the range of millivolts whereas EOG signal in the range of microvolts. This two-electrode system is stable, cost-effective and portable while still maintaining high common-mode rejection ratio (CMRR).


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2835 ◽  
Author(s):  
Zhongjie Hou ◽  
Jinxi Xiang ◽  
Yonggui Dong ◽  
Xiaohui Xue ◽  
Hao Xiong ◽  
...  

A prototype of an electrocardiogram (ECG) signal acquisition system with multiple unipolar capacitively coupled electrodes is designed and experimentally tested. Capacitively coupled electrodes made of a standard printed circuit board (PCB) are used as the sensing electrodes. Different from the conventional measurement schematics, where one single lead ECG signal is acquired from a pair of sensing electrodes, the sensing electrodes in our approaches operate in a unipolar mode, i.e., the biopotential signals picked up by each sensing electrodes are amplified and sampled separately. Four unipolar electrodes are mounted on the backrest of a regular chair and therefore four channel of signals containing ECG information are sampled and processed. It is found that the qualities of ECG signal contained in the four channel are different from each other. In order to pick up the ECG signal, an index for quality evaluation, as well as for aggregation of multiple signals, is proposed based on phase space reconstruction. Experimental tests are carried out while subjects sitting on the chair and clothed. The results indicate that the ECG signals can be reliably obtained in such a unipolar way.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 935 ◽  
Author(s):  
Yeong-Hyeon Byeon ◽  
Sung-Bum Pan ◽  
Keun-Chang Kwak

This paper conducts a comparative analysis of deep models in biometrics using scalogram of electrocardiogram (ECG). A scalogram is the absolute value of the continuous wavelet transform coefficients of a signal. Since biometrics using ECG signals are sensitive to noise, studies have been conducted by transforming signals into a frequency domain that is efficient for analyzing noisy signals. By transforming the signal from the time domain to the frequency domain using the wavelet, the 1-D signal becomes a 2-D matrix, and it could be analyzed at multiresolution. However, this process makes signal analysis morphologically complex. This means that existing simple classifiers could perform poorly. We investigate the possibility of using the scalogram of ECG as input to deep convolutional neural networks of deep learning, which exhibit optimal performance for the classification of morphological imagery. When training data is small or hardware is insufficient for training, transfer learning can be used with pretrained deep models to reduce learning time, and classify it well enough. In this paper, AlexNet, GoogLeNet, and ResNet are considered as deep models of convolutional neural network. The experiments are performed on two databases for performance evaluation. Physikalisch-Technische Bundesanstalt (PTB)-ECG is a well-known database, while Chosun University (CU)-ECG is directly built for this study using the developed ECG sensor. The ResNet was 0.73%—0.27% higher than AlexNet or GoogLeNet on PTB-ECG—and the ResNet was 0.94%—0.12% higher than AlexNet or GoogLeNet on CU-ECG.


Author(s):  
Mohand Lokman Ahmad Al-dabag ◽  
Haider Th. Salim ALRikabi ◽  
Raid Rafi Omar Al-Nima

One of the common types of arrhythmia is Atrial Fibrillation (AF), it may cause death to patients. Correct diagnosing of heart problem through examining the Electrocardiogram (ECG) signal will lead to prescribe the right treatment for a patient. This study proposes a system that distinguishes between the normal and AF ECG signals. First, this work provides a novel algorithm for segmenting the ECG signal for extracting a single heartbeat. The algorithm utilizes low computational cost techniques to segment the ECG signal. Then, useful pre-processing and feature extraction methods are suggested. Two classifiers, Support Vector Machine (SVM) and Multilayer Perceptron (MLP), are separately used to evaluate the two proposed algorithms. The performance of the last proposed method with the two classifiers (SVM and MLP) show an improvement of about (19% and 17%, respectively) after using the proposed segmentation method so it became 96.2% and 97.5%, respectively.


Author(s):  
WANSONG XU ◽  
TIANWU CHEN ◽  
FANYU DU

Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.


2004 ◽  
Vol 12 (3) ◽  
pp. 152-158 ◽  
Author(s):  
Aleksandar Boskovic ◽  
Miroslav Despotovic ◽  
Dragana Bajic

Electrocardiogram (ECG) signal compression suffers of lack of standards for analogue-digital conversion. Results of this study have shown that 8 bits/sample, although frequently in use, does not satisfy quality criteria for medical doctors. This paper also presents predictive technique for lossless ECG compression using linear time-invariant models. Tests on clinically measured ECG signals confirm a very good performance in terms of compression ratio.


Author(s):  
Renuka Vijay Kapse

Health monitoring and technologies related to health monitoring is an appealing area of research. The electrocardiogram (ECG) has constantly being mainstream estimation plan to evaluate and analyse cardiovascular diseases. Heart health is important for everyone. Heart needs to be monitored regularly and early warning can prevent the permanent heart damage. Also heart diseases are the leading cause of death worldwide. Hence the work presents a design of a mini wearable ECG system and it’s interfacing with the Android application. This framework is created to show and analyze the ECG signal got from the ECG wearable system. The ECG signals will be shipped off an android application via Bluetooth device. This system will automatically alert the user through SMS.


Sign in / Sign up

Export Citation Format

Share Document