Smart Grid Test Bed Using OPNET and Power Line Communication - Advances in Computer and Electrical Engineering
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By IGI Global

9781522527763, 9781522527770

OPNET is a network simulation tool which can simulate various elements in a network. It is able to analyze traffics and even can simulate security events recently. System designers can identify vulnerabilities or find an efficient algorithm/protocol that could reduce costs if simulations are performed prior to actual implementation/construction of a large-scale system. Thus, this chapter includes the method of simulating a PLC-system, designing a PLC-based vertical fish farm and an expandable simulation test bed with which students or researchers will be able simulate their implementation methods. With these methods, it will be possible to perform large-scale simulations.


In this design unit, a design to test the performances of varying models was developed for the simulations in the PLC-base data link layer. The design includes a smart home and a Smart Grid environment where a comparison between Zigbee and WiMax-based models can be performed. The Smart Grid Test Bed has been designed using OPNET and Power Line Communication is proposed in this book. It is being designed to allow test bed experiments in four layers among OSI 7 layers. This chapter is organized as follows: The Physical Layer and Datalink Layer for Smart Grid Test Bed in Section 1; the Transport Layer for Smart Grid Test Bed in Section 2; and finally, Application Layer for Smart Grid Test Bed in Section.


This chapter presents related and current research on Smart Grids, Test Beds, AMI (Advanced Metering Infrastructure), PLC (Power Line Communication), and other emerging fields within OPNET and Power Line Communication. The author emerges in new research trends to provide adequate information on Smart House, Smart Grid communication, Smart Grid design challenges, and PLC and the Smart Grid. This chapter will pave the way for the information in upcoming chapters.


The key to a Smart Grid is to manage electric power within the grid efficiently. There are many advantages in building a smart grid but it is useful in using it as an ancillary power grid for the business that can be damaged extensively due to blackout or interruption of power caused by hurricanes at power plants, substations and other related infrastructures. Fish farms in the republic of Korea use a considerable power and suffer a serious loss from a mass stranding caused by power interruptions. This chapter introduces a case study which aims to design a power line-based communication for the fish farms/vertical farms as the cost of constructing an internet network at the farm with UTP cables and other communication equipment is very high. This section includes a designing technique for the entire system and its necessary applications.


This chapter compares the system explained throughout this book with other systems expressed in other research. ‘The Trend on the Smart Grid Systems in the Republic of Korea' shows a normal system in Smart Grid Test Bed in Jeju-island, and the author distinguishes this approach with that of a new proposed method using RUDP (Reliable User Datagram Protocol).


In recent years, Smart Grid have become the center of interest for IT companies and construction companies and various types of Smart Grids have been made currently available on the market. Yet, equipment is costly and it is not easy to convert existing equipment for Smart Grid application as they may require additional resources which could also inflict much costs. The extra costs involving the remodeling of existing housing structure and installment of new equipment can be avoided by using advanced wireless technologies. As an example, this book proposed an indoor localization system that adopts Bluetooth technology and uses RSSI (Received Signal Strength Indication) values for localization. Researchers have configured a system where the central control device will recognize all other devices or equipment in the system, communicate with each other, and respond to the commands or the information provided. However, despite the efforts of many researchers, existing RSSI-based indoor localization systems do not show a satisfactory level of accuracy such that we have devised a system that traces the trend in the RSSI samples.


Among many hacking attempts carried out in the past few years, the cyber-attacks that could have caused a national-level disaster were the attacks against nuclear facilities including nuclear power plants. The most typical one was the Stuxnet attack against Iranian nuclear facility and the cyber threat targeting one of the facilities operated by Korea Hydro and Nuclear Power Co., Ltd (Republic of Korea; ROK; South Korea). Although the latter was just a threat, it made many Korean people anxious while the former showed that the operation of nuclear plant can be actually stopped by direct cyber-attacks. After these incidents, the possibility of cyber-attacks against industrial control systems has become a reality and the security for these systems has been tightened based on the idea that the operations by network-isolated systems are no longer safe from the cyber terrorism. The ROK government has established a realistic control systems defense concept and in the US, the relevant authorities have set up several security frameworks to prepare for the threats. At the same time, Smart Grids are not an exception any longer. Thus, in this chapter, the security tests have been tested under the Smart Grid environment and several DDoS (Distributed Denial of Service) attack scenarios were developed for experiments.


In this chapter, a design that allows testing of the performances of various models was developed with OPNET for the simulations in the PLC-base data link layer. As the model proposed earlier, the design includes a smart home and a Smart Grid environment where a comparison between Zigbee and WiMax-based models can be performed. The Smart Grid Test Bed has been implemented using OPNET and Power Line Communication is proposed in this book. It is being designed to allow Test Bed experiments in four layers among seven OSI layers. This chapter is organized as follows: the physical layer and datalink layer for Smart Grid Test Bed in Section 1; the transport layer for Smart Grid Test Bed in Section 2; and finally, application layer for Smart Grid Test Bed in Section 3.


Sign in / Sign up

Export Citation Format

Share Document