Cloning of Tumor Suppressor Genes Involved in Solid Tumor Development

1993 ◽  
Vol 119 (11) ◽  
pp. 1210-1216
Author(s):  
D. I. Smith ◽  
M. del Mar Alonso
2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16064-e16064
Author(s):  
Hajime Kashima ◽  
Daniel Veronese-Paniagua ◽  
Anthony Fischer ◽  
Blair Madison ◽  
Deborah Rubin

e16064 Background: Mouse models of intestinal tumorigenesis have been developed and many of them involve mutations in the Apc gene. However, human intestinal tumors contain multiple additional sporadic mutations in tumor suppressor genes (TSGs). Our goal is to develop a novel mouse model of intestinal tumorigenesis that can recapitulate the natural history of mutations in diverse stages of tumor development. Methods: We used multiple guide RNAs to achieve random mutations in the canonical TSGs, Apc, Pten, Smad4, and Tp53. We generated transgenic (PPAS) mice that constitutively express the appropriate guide RNAs. Moreover, we achieved inducible Cas9 expression in icCas9N mice intestine using the Villin promoter to drive both a doxycycline-dependent activator and a doxycycline-inactivated repressor. We fed the doxycycline chow to PPAS:icCas9 double transgenic mice from the age of 6 to 8 weeks, and harvested intestine at 12 weeks. Results: We examined seven PPAS;icCas9 mice, and detected intestinal tumors in all the mice. Two mice had small intestinal tumor, three mice had colonic tumor, and two mice had tumors in both small and large intestine. The average number of tumors were 0.86, 1.57, 2.43 in small intestine, colon, and both respectively. We analyzed mutations in 11 tumors in 6 mice. The mutation patterns of Apc, Pten, Smad4 and Tp53 in tumors shared three distinct patterns. One was characterized by mutations in all four TSGs (n = 9). The second showed mutation in APC and Smad4 and Pten (n = 1). The third showed mutation only in Tp53 (n = 1). Normal intestine and colon in PPAS:icCas9 mice had no mutations. Conclusions: This model provides a powerful platform for modeling intestinal tumorigenesis driven by the canonical signaling pathway which are commonly dysregulated in colon cancer. This model provides a means for rapid development of intestinal tumors in mice, enabling an investigation of the relationship between novel candidate regulators of tumorigenesis and the canonical signaling pathways regulated by these four common TSGs. [Table: see text]


2020 ◽  
Author(s):  
Meng-Yao Lu ◽  
Wen-Chung Wang ◽  
Tai-Cheng Hou ◽  
Chen-Yun Kuo ◽  
Yen-Chein Lai

Abstract Background: Wilms tumor is a solid tumor that frequently occurs in children. Genetic or epigenetic aberrations in WT1 and WT2 loci are implicated in its etiology. Moreover, tumor suppressor genes are frequently silenced by methylation in this tumor. Methods: In the present study, we analyzed the methylation statuses of promoter regions of 24 different tumor suppressor genes using a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach in six Wilms tumors. Results: All six Wilms tumors showed methylation of RASSF1 specific to tumors, not in normal tissues. Moreover, methylated HIC1 was identified in stromal type Wilms tumors and methylated BRCA1 was identified in epithelial type Wilms tumors. Unmethylated CASP8, RARB, MLH1_167, APC, and CDKN2A were found only in blastemal predominant type Wilms tumors. Conclusions: Our results indicated that methylation of RASSF1 is the essential event in the tumorigenesis of Wilms tumor, which may inform its clinical and therapeutic management. In addition, mixed type Wilms tumors may be classified according to epithelial, stromal, and blastemal components via MS-MLPA-based approach.


1999 ◽  
Vol 84 (2) ◽  
pp. 730-735
Author(s):  
Magnus Kjellman ◽  
Leyla Roshani ◽  
Bin Tean Teh ◽  
Olli-Pekka Kallioniemi ◽  
Anders Höög ◽  
...  

To identify chromosomal regions that may contain loci for tumor suppressor genes involved in adrenocortical tumor development, a panel of 60 tumors (39 carcinomas and 21 adenomas) were screened for loss of heterozygosity. Although the vast majority of loss of heterozygosity (LOH) were detected in the carcinomas and involved chromosomes 2, 4, 11, and 18, only few were found in the adenomas. Therefore, 2 loci that harbor the familial cancer syndromes Carney complex in 2p16 and the multiple endocrine neoplasia type 1 gene in 11q13 were further studied in 27 (13 carcinomas and 14 adenomas) of the 60 tumors. Detailed analysis of the 2p16 region mapped a minimal area of overlapping deletions to a 1-centimorgan region, which is separate from the Carney complex locus. LOH for a microsatellite marker (PYGM), very close to the MEN1 gene, was detected in all 8 informative carcinomas (100%) and in 2 of 14 adenomas. Of the 27 cases analyzed in detail, 13 cases (11 carcinomas and 2 adenomas) showed LOH on chromosome 11 and was therefore selected for MEN1 gene mutation analysis. In 6 cases a common polymorphism (Asp418Asp) was found, but no mutation was detected. In conclusion, our data indicate the existence of tumor suppressor genes at multiple chromosomal locations, whose inactivations are involved in the development of adrenocortical carcinomas. Loss of genetic material from 2p16 was strongly associated with the malignant phenotype, as it was seen in almost all carcinomas but not in any of the adenomas. LOH in 11q13 also occurred frequently in the carcinomas, but was not associated with a MEN1 mutation, suggesting the involvement of a different tumor suppressor gene on this chromosome.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1404
Author(s):  
Thuan Duc Lao ◽  
Toan Ngoc Nguyen ◽  
Thuy Ai Huyen Le

DNA methylation, the most common epigenetic alteration, has been proven to play important roles in nasopharyngeal carcinoma (NPC). Numerous tumor suppressor genes located on the chromosome 3p, particularly in the region of 3p21, are frequently methylated in NPC, thus suggesting great potential for diagnosis of NPC. In this review, we summarize recent findings of tumor suppressor genes on chromosome 3 that likely drive nasopharyngeal tumor development and progression, based on previous studies related to the hypermethylation of these target genes. Better understanding will allow us to design further experiments to establish a potential test for diagnosis of NPC, as well as bring about methylated therapies to improve the treatment of NPC.


2008 ◽  
Vol 87 (1) ◽  
pp. 14-32 ◽  
Author(s):  
S. Choi ◽  
J.N. Myers

The development of oral squamous cell carcinoma (OSCC) is a multistep process requiring the accumulation of multiple genetic alterations, influenced by a patient’s genetic predisposition as well as by environmental influences, including tobacco, alcohol, chronic inflammation, and viral infection. Tumorigenic genetic alterations consist of two major types: tumor suppressor genes, which promote tumor development when inactivated; and oncogenes, which promote tumor development when activated. Tumor suppressor genes can be inactivated through genetic events such as mutation, loss of heterozygosity, or deletion, or by epigenetic modifications such as DNA methylation or chromatin remodeling. Oncogenes can be activated through overexpression due to gene amplification, increased transcription, or changes in structure due to mutations that lead to increased transforming activity. This review focuses on the molecular mechanisms of oral carcinogenesis and the use of biologic therapy to specifically target molecules altered in OSCC. The rapid progress that has been made in our understanding of the molecular alterations contributing to the development of OSCC is leading to improvements in the early diagnosis of tumors and the refinement of biologic treatments individualized to the specific characteristics of a patient’s tumor.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2943-2943
Author(s):  
Maria Virgilio ◽  
Grzegorz Pietka ◽  
Elspeth M Payne

Abstract Diamond-Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome that manifests as a profound macrocytic anemia and classically presents within the first year of life. Heterozygous mutations in, or genomic loss of one of several Ribosomal Protein (RP) genes have been identified in over 50% of DBA patients, most commonly RPS19, accounting for 25% of all cases. DBA shares a similar erythroid phenotype to the 5q- subtype of myelodysplastic syndrome in which anemia is thought to arise from heterozygous loss of RPS14. Anemia in these conditions is at least partially due to p53-mediated apoptosis and cell cycle arrest of erythroid progenitors. To further study the role of p53 in the pathogenesis of DBA and 5q- syndrome, we employed genome editing tools to generate stable Rps14 and Rps19 knockout zebrafish lines. We generated Transcription Activator-Like Effector Nucleases (TALENs) targeting exon 1 of rps19 and exon 1 of rps14 as well as Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) single guide RNAs (sgRNA) targeting exon 2 of rps19. TALENs or CRISPRs were injected into p53m214k/m214k zebrafish embryos at the single-cell stage. This zebrafish line carries a mutated p53 that is insensitive to DNA damage and hence prone to tumor formation. rps19 CRISPR sgRNAs were injected with mRNAs encoding Cas9, Cas9D10A nickase, and a ssDNA guide with a human DBA mutation. For each cohort of embryos injected, genomic DNA analysis from 20 phenotypically normal embryos from each clutch was screened to determine the efficacy of cleavage by TALEN and CRISPR using MiSeq. Mutations were identified in 30% (rps14 TALEN) 29% (rps19 TALEN), 27% (rps19 Crispr Cas9) and 12% (rps19 Crispr Cas9D10A) of reads. None of the rps19Crispr Cas9D10A carried the ssDNA guide mutation, rather single nucleotide variants and indels similar to those observed with Cas9. The remaining embryos from each F0 clutch were raised in order to generate stable mutant lines in the F1 generation; however, early, overt tumor growth was noted in all RP injected lines. Tumors were observed from 4 months post fertilization compared with 9 months for uninjected controls. F0 RP mosaic fish continued to develop tumors earlier than uninjected counterparts. At 10 months of age tumor development was statistically significantly higher in rps19 and rps14 TALEN and rps19 Cas9D10A and trended towards significance in rps19 Cas9 injected fish. Overall survival was significantly reduced in each of the cohorts compared to p53m214k/m214k uninjected controls (p<0.0001). Preliminary histology of grown tumors has shown melanomas and malignant peripheral nerve sheath tumors. Zebrafish injected with an unrelated TALEN targeting a zinc transporter (SLC30A10), into p53m214k mutant embryos do not show any increase in tumor formation compared to uninjected controls. Notably several RP’s have been shown to be haploinsufficient tumor suppressor genes in their own right in zebrafish and drosophila models. To determine if the early tumor development in p53m214k zebrafish was simply additive to a potential tumor suppressor effect of Rps14 or Rps19 alone, we injected WT embryos with the rps14 and rps19 TALENS. High mortality in rps14 and rps19 TALEN injected WT embryos impeded this analysis; however recent published reports on stable Rps19 mutant zebrafish do not report an increase in tumor incidence. Interestingly, embryo survival was not affected when TALENs were injected into p53m214/+. Analysis of these zebrafish is ongoing. Our results show that loss of Rps14 or Rps19 accelerates the development of tumors in the p53m214k/m214k mutant line. This effect is independent of the RP or the method of mutation (TALEN vs CRISPR), indicating that off target effects are unlikely to be responsible for this observation. As these are mosaic F0 fish, it is possible that tumors may arise from cells with homozygous RP mutations. Further molecular analysis will reveal this. We have now identified 2 stable Rps19 mutant lines, and tumor analysis of F1 fish from these lines is ongoing. In conclusion, we have shown that loss of Rps14 or Rps19 cooperates with a loss of function p53 mutation to accelerate tumor formation and death. Our results highlight the importance of caution in using p53 suppressors as a therapeutic option in RP deficient patients. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document