Fungal Treatment of Distillery and Brewery Wastes

2006 ◽  
pp. 76-114
2018 ◽  
Vol 12 (1) ◽  
pp. 1-6
Author(s):  
Khaled Gaafar ◽  
Reham Nabil ◽  
Asmaa Yaseen

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 895
Author(s):  
Jing Xu ◽  
Kaihui Zhang ◽  
Andrew G. S. Cuthbertson ◽  
Cailian Du ◽  
Shaukat Ali

Nanotechnology has clear potential in the development of innovative insecticidal products for the biorational management of major insect pests. Metal-based nanoparticles of different microbial pest control agents have been effective against several pests. Synthesis of Beauveria brongniartii based Fe0 nanoparticles (Fe0NPs) and their bio-efficacy against Spodoptera litura was observed during this study. Beauveria brongniartii conidia were coated with Fe0NPs and characterized by applying a selection of different analytical techniques. Ultraviolet (UV) spectroscopy showed the characteristic band of surface plasmon at 430 nm; Scanning electron microscopy (SEM) images showed spherical shaped nanoparticles with a size ranging between 0.41 to 0.80 µm; Energy-dispersive X-ray (EDX) spectral analysis revealed characteristic Fe peaks at 6.5 and 7.1 Kev; the X-ray diffractogram showed three strong peaks at 2θ values of 45.72°, 64.47°, and 84.05°. The bioassay studies demonstrated that mortality of 2nd instar S. litura larvae following Fe0NPs treatment increased with increasing concentrations of Fe0NPs at different time intervals. The median lethal concentration (LC50) values of Fe0NPs against S. litura after seven days of fungal treatment was 59 ppm, whereas median survival time (LT50) values for 200 and 500 ppm concentrations of Fe0NPs against S. litura seven days post-treatment were 5.1 and 2.29 days, respectively. Beauveria brongniartii-Fe0NPs caused significant reductions in feeding and growth parameters (relative growth rate, relative consumption rate, and efficiency of conversion of ingested food) of S. litura. Beauveria brongniartii Fe0NPs induced reduction in glutathione-S-transferase activities throughout the infection period whereas activities of antioxidant enzymes decreased during later periods of infection. These findings suggest that B. brongniartii Fe0NPs can potentially be used in biorational S. litura management programs.


2021 ◽  
Vol 9 (6) ◽  
pp. 1184
Author(s):  
Nomfusi Ntsobi ◽  
Morris Fanadzo ◽  
Marilize Le Roes-Hill ◽  
Felix Nchu

Globally, fungal inocula are being explored as agents for the optimization of composting processes. This research primarily evaluates the effects of inoculating organic vegetable heaps with the entomopathogenic fungus Clonostachys rosea f. catenula (Hypocreales) on the biophysicochemical properties of the end-product of composting. Six heaps of fresh cabbage (Brassica oleracea var. capitata) waste were inoculated with C. rosea f. catenula conidia and another six were not exposed to the fungus. The composted materials from the fungus- and control-treated heaps were subsequently used as a medium to cultivate tomatoes (Solanum lycopersicum). The biophysicochemical characteristics of the composted materials were also assessed after composting. In addition, the protective effect of the fungal inoculum against red spider mite (Tetranychus urticae) infestations in the tomatoes was evaluated through the determination of conidial colonization of the plant tissue and the number of plants infested by the insect. Furthermore, phytotoxicity tests were carried out post experiment. There were few significant variations (p < 0.05) in heap temperature or moisture level between treatments based on the weekly data. We found no significant differences in the levels of compost macronutrient and micronutrient constituents. Remarkably, the composted materials, when incorporated into a growth medium from fungus-treated heaps, induced a 100% endophytic tissue colonization in cultivated tomato plants. While fewer red spider mite infestations were observed in tomato plants grown in composted materials from fungus-treated heaps, the difference was not significant (χ2 = 0.96 and p = 0.32). The fungal treatment yielded composted materials that significantly (p < 0.05) enhanced tomato seed germination, and based on the phytotoxicity test, the composted samples from the heaps exposed to the C. rosea f. catenula inoculum were not toxic to tomato seeds and seedlings. In conclusion, this study showed that C. rosea f. catenula improved the quality of composted materials in terms of fungal endophytism and seed germination.


2021 ◽  
Vol 7 (1) ◽  
pp. 39
Author(s):  
Mariane Daou ◽  
Clementina Farfan Soto ◽  
Amel Majira ◽  
Laurent Cézard ◽  
Betty Cottyn ◽  
...  

Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.


1999 ◽  
Vol 29 (7) ◽  
pp. 852-858 ◽  
Author(s):  
G J Harper ◽  
P G Comeau ◽  
W Hintz ◽  
R E Wall ◽  
R Prasad ◽  
...  

A national research program was established to test the field efficacy of the native fungal pathogen Chondrostereum purpureum (Pers. ex Fr.) Pouzar) for control of hardwood vegetation. During 1995, two fungal isolates were applied as a biocontrol agent to the cut stumps of Populus tremuloides Michx. (trembling aspen) and Alnus viridis ssp. sinuata (Regel) Á. Löve & D. Löve (Sitka alder). Treatments consisted of two formulations (BC, ON) in combination with two fungal isolates (2139, JAM6), blank formulations, cutting only, triclopyr herbicide application, and an uncut control. Analysis of Sitka alder clump mortality indicated isolates JAM6 and 2139 in combination with the BC formulation caused clump mortality of 90 and 88%, respectively. The blank formulation treatments caused the lowest clump mortality and appeared to promote sprouting and growth of Sitka alder when compared with cutting alone. At the aspen installation, the BC formulation with isolate 2139 was found to be the most effective fungal treatment resulting in 84% aspen stem mortality. The results from both installations suggest that C. purpureum efficacy appears to be dependent on the virulence of the isolate and the formulation.


Author(s):  
Sakti Widyanta Pratama ◽  
Sri Sukamto ◽  
Lis Nur Asyiah ◽  
Yeni Vida Ervina

Black pod disease caused by Phytophthora palmivorafungus is one of the important diseases on cocoa crop. Pod rot is the most important disease because it may cause loss of cocoa pod. Until now, the fungal pathogen of cocoa black pod disease is still a crucial problem and there is no fungicide that is really effective against the disease. One alternative to control the cocoa black pod disease is by using biological agents as biofungicide, including utilizing Pseudomonas fluorescenceand Bacillus subtilis bacteria. The research was done by isolation of P. palmivora from infected pods of Kaliwining Experimental Station to obtain pure cultures of fungus and by multiplication of P. fluorescence and B. subtilis. Antagonist test was performed by inoculating P. palmivora into a petri dish in a distance of 3 cm from the edge. P. fluorescenceand B. Subtilis were inoculated into petridishes in three days after the fungal treatment. Control was inoculated with isolate of P. palmivora only. Fungal growth was measured everyday by measuring radius of fungal colonies first time 24 hours after inoculation. Growth of Phytophthora palmivora in the two treatmens were used to calculate the percentage of inhibition. The results of this study indicated that P. fluorescence and B. subtiliswere able to inhibit fungal growth of P. palmivora. Both bacterial antagonists had the same effectiveness in inhibiting the growth of P. palmivora fungus based on the percentage of inhibition and effectiveness criteria. Based on the results of translucent zones indicated that B. subtiliswas more powerfull in inhibiting growth of P. Palmivora compared to P. fluorescence. Key words: Black pod disease of cocoa, biological control, Phytophthora palmivora, Pseudomonas fluorescence, Bacillus subtilis


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao Fu ◽  
Jialong Zhang ◽  
Xiangyu Gu ◽  
Hongbo Yu ◽  
Shulin Chen

Abstract Background The efficiency of biological systems as an option for pretreating lignocellulosic biomass has to be improved to make the process practical. Fungal treatment with manganese (Mn) addition for improving lignocellulosic biomass fractionation and enzyme accessibility were investigated in this study. The broad-spectrum effect was tested on two different types of feedstocks with three fungal species. Since the physicochemical and structural properties of biomass were the main changes caused by fungal degradation, detailed characterization of biomass structural features was conducted to understand the mechanism of Mn-enhanced biomass saccharification. Results The glucose yields of fungal-treated poplar and wheat straw increased by 2.97- and 5.71-fold, respectively, after Mn addition. Particularly, over 90% of glucose yield was achieved in Mn-assisted Pleurotus ostreatus-treated wheat straw. A comparison study using pyrolysis gas chromatography mass spectrometry (Py-GC/MS) and two-dimensional 1H–13C heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) spectroscopy was conducted to elucidate the role of Mn addition on fungal disruption of the cross-linked structure of whole plant cell wall. The increased Cα-oxidized products was consistent with the enhanced cleavage of the major β-O-4 ether linkages in poplar and wheat straw lignin or in the wheat straw lignin–carbohydrate complexes (LCCs), which led to the reduced condensation degree in lignin and decreased lignin content in Mn-assisted fungal-treated biomass. The correlation analysis and principal component analysis (PCA) further demonstrated that Mn addition to fungal treatment enhanced bond cleavage in lignin, especially the β-O-4 ether linkage cleavage played the dominant role in removing the biomass recalcitrance and contributing to the glucose yield enhancement. Meanwhile, enhanced deconstruction of LCCs was important in reducing wheat straw recalcitrance. The findings provided not only mechanistic insights into the Mn-enhanced biomass digestibility by fungus, but also a strategy for improving biological pretreatment efficiency of lignocellulose. Conclusion The mechanism of enhanced saccharification of biomass by Mn-assisted fungal treatment mainly through Cα-oxidative cleavage of β-O-4 ether linkages further led to the decreased condensation degree in lignin, as a result, biomass recalcitrance was significantly reduced by Mn addition. Graphic abstract


2000 ◽  
Vol 90 (7) ◽  
pp. 699-709 ◽  
Author(s):  
Bryan A. Bailey ◽  
Patricia C. Apel-Birkhold ◽  
Nichole R. O'Neill ◽  
James Plaskowitz ◽  
Sharon Alavi ◽  
...  

Two pathogenic fungi of opium poppy, Pleospora papaveracea and Dendryphion penicillatum, were isolated from field material in Beltsville, MD. The processes of infection by these two fungi were studied to determine the optimal environmental conditions for infection. Both fungi formed appressoria capable of penetrating directly through the plant epidermal layer. Of the two fungi, P. papaveracea was more aggressive, causing more rapid necrosis. Appressorial formation by P. papaveracea occurred as early as 4 h after application of a conidial suspension to poppy leaves. P. papaveracea formed more appressoria than did D. penicillatum, especially at cool temperatures (7 to 13°C). In greenhouse studies, P. papaveracea caused more damage to opium poppy than did D. penicillatum when applied in 10% unrefined corn oil. In the field, P. papaveracea was more consistent in its effects on opium poppy from a local seed source designated Indian Grocery. P. papaveracea caused higher disease ratings, more stem lesions, and equal or greater yield losses than did D. penicillatum on Indian Grocery. The late-maturing opium poppy variety White Cloud was severely damaged by disease, regardless of formulation or fungal treatment. P. papaveracea was the predominant fungus isolated from poppy seed capsules and the only fungus reisolated from the field the following year. These studies provide a better understanding of the infection process and the differences between these two pathogenic fungi and will be beneficial for the development of the fungi as biological control agents.


Sign in / Sign up

Export Citation Format

Share Document