scholarly journals Probing the precipitation life cycle by iterative rain cell tracking

2013 ◽  
Vol 118 (24) ◽  
pp. 13,361-13,370 ◽  
Author(s):  
Christopher Moseley ◽  
Peter Berg ◽  
Jan O. Haerter
Keyword(s):  
2020 ◽  
Author(s):  
Satyanarayana Tani ◽  
Helmut Paulitsch

<p>A severe hailstorm activity on 27<sup>th</sup> July 2019 created significant damage to crops in the province of Styria, Austria. The hail reports from ESWD (European Severe Weather Database) shows with maximum diameter up to 8 cm was noticed in the vicinity of the storm occurred. Total 1040 crop damage reports were claimed from the Austrian Hail Insurance System due to this severe hailstorm event. A close inspection and understanding features of severe hailstorms is helpful for hail risk assessment. The present study investigates the associated synoptic weather conditions and life cycle of the thunderstorm, and its dynamics. Further analysis carried about hail detection methods and crop hail damage assessment based remote sending and crowdsourcing data. The spatial distribution and temporal development of severe thunderstorms details extracted from radar data. The 3D radar data and storm cell tracking software used to capture the thunderstorm life cycle from the beginning to the dissipating stage. Radar-derived parameters collected for each storm cells, i.e. Duration of the storm cell, volume and area the storm cell, the cloud top height and the maximum reflectivity. Hail detection algorithms (Waldvogel and Auer) used to identify hail event period. The spatial distribution total hail kinetic energy maps prepared to capture the swath and intensity of the hail storms to classify possible crop-hail damaged areas. Hail observational data from ESWD (European Severe Weather Database) and HeDi (Hail event Data interface) and crop damage reports from the Austrian Hail Insurance System are utilised as a ground truth information.  An event-based severe hailstorm analysis help to find proper risk transfer solutions for loss adjustment.</p>


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Basile Jacquel ◽  
Théo Aspert ◽  
Damien Laporte ◽  
Isabelle Sagot ◽  
Gilles Charvin

The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that non-monotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein super-assemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.


2020 ◽  
Author(s):  
Basile Jacquel ◽  
Théo Aspert ◽  
Damien Laporte ◽  
Isabelle Sagot ◽  
Gilles Charvin

AbstractThe life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive establishment of structural reorganizations observed in quiescent cells remains unclear. To address this question, we have developed a method that combines nutrient-limited proliferation assays at the population level with single-cell tracking to unravel the coordination between metabolic and structural transitions in cells during an unperturbed lifecycle. We show that non-monotonous internal pH fluctuations are in sync with successive waves of protein super-assemblies formation and ultimately lead to a cytosolic glass transition. Our results, therefore, suggest a simple model explaining how the complex developmental changes during the yeast life cycle are orchestrated by the sequence of metabolic transitions.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


Author(s):  
Randolph W. Taylor ◽  
Henrie Treadwell

The plasma membrane of the Slime Mold, Physarum polycephalum, process unique morphological distinctions at different stages of the life cycle. Investigations of the plasma membrane of P. polycephalum, particularly, the arrangements of the intramembranous particles has provided useful information concerning possible changes occurring in higher organisms. In this report Freeze-fracture-etched techniques were used to investigate 3 hours post-fusion of the macroplasmodia stage of the P. polycephalum plasma membrane.Microplasmodia of Physarum polycephalum (M3C), axenically maintained, were collected in mid-expotential growth phase by centrifugation. Aliquots of microplasmodia were spread in 3 cm circles with a wide mouth pipette onto sterile filter paper which was supported on a wire screen contained in a petri dish. The cells were starved for 2 hrs at 24°C. After starvation, the cells were feed semidefined medium supplemented with hemin and incubated at 24°C. Three hours after incubation, samples were collected randomly from the petri plates, placed in plancettes and frozen with a propane-nitrogen jet freezer.


1994 ◽  
Vol 11 (1) ◽  
pp. 47-56
Author(s):  
Virginia C. Day ◽  
Zachary F. Lansdowne ◽  
Richard A Moynihan ◽  
John A. Vitkevich

1978 ◽  
Vol 23 (2) ◽  
pp. 85-86
Author(s):  
BERTRAM J. COHLER
Keyword(s):  

1978 ◽  
Vol 23 (9) ◽  
pp. 697-697
Author(s):  
ALVIN G. BURSTEIN

Sign in / Sign up

Export Citation Format

Share Document