scholarly journals Statistical-dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model

2016 ◽  
Vol 8 (2) ◽  
pp. 538-565 ◽  
Author(s):  
Wei Zhang ◽  
Gabriele Villarini ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Richard Gudgel
2017 ◽  
Vol 30 (6) ◽  
pp. 2209-2232 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Gabriele Villarini ◽  
Hiroyuki Murakami ◽  
Richard Gudgel ◽  
...  

Abstract This study attempts to improve the prediction of western North Pacific (WNP) and East Asia (EA) landfalling tropical cyclones (TCs) using modes of large-scale climate variability [e.g., the Pacific meridional mode (PMM), the Atlantic meridional mode (AMM), and North Atlantic sea surface temperature anomalies (NASST)] as predictors in a hybrid statistical–dynamical scheme, based on dynamical model forecasts with the GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 with flux adjustments (FLOR-FA). Overall, the predictive skill of the hybrid model for the WNP TC frequency increases from lead month 5 (initialized in January) to lead month 0 (initialized in June) in terms of correlation coefficient and root-mean-square error (RMSE). The hybrid model outperforms FLOR-FA in predicting WNP TC frequency for all lead months. The predictive skill of the hybrid model improves as the forecast lead time decreases, with values of the correlation coefficient increasing from 0.56 for forecasts initialized in January to 0.69 in June. The hybrid models for landfalling TCs over the entire East Asian (EEA) coast and its three subregions [i.e., southern EA (SEA), middle EA (MEA), and northern EA (NEA)] dramatically outperform FLOR-FA. The correlation coefficient between predicted and observed TC landfall over SEA increases from 0.52 for forecasts initialized in January to 0.64 in June. The hybrid models substantially reduce the RMSE of landfalling TCs over SEA and EEA compared with FLOR-FA. This study suggests that the PMM and NASST/AMM can be used to improve statistical/hybrid forecast models for the frequencies of WNP or East Asia landfalling TCs.


2018 ◽  
Vol 32 (2) ◽  
pp. 309-334
Author(s):  
J. G. McLay ◽  
E. A. Hendricks ◽  
J. Moskaitis

ABSTRACT A variant of downscaling is devised to explore the properties of tropical cyclones (TCs) that originate in the open ocean of the western North Pacific Ocean (WestPac) region under extreme climates. This variant applies a seeding strategy in large-scale environments simulated by phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate-model integrations together with embedded integrations of Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC), an operational, high-resolution, nonhydrostatic, convection-permitting numerical weather prediction (NWP) model. Test periods for the present day and late twenty-first century are sampled from two different integrations for the representative concentration pathway (RCP) 8.5 forcing scenario. Then seeded simulations for the present-day period are contrasted with similar seeded simulations for the future period. Reinforcing other downscaling studies, the seeding results suggest that the future environments are notably more conducive to high-intensity TC activity in the WestPac. Specifically, the future simulations yield considerably more TCs that exceed 96-kt (1 kt ≈ 0.5144 m s−1) intensity, and these TCs exhibit notably greater average life cycle maximum intensity and tend to spend more time above the 96-kt intensity threshold. Also, the future simulations yield more TCs that make landfall at >64-kt intensity, and the average landfall intensity of these storms is appreciably greater. These findings are supported by statistical bootstrap analysis as well as by a supplemental sensitivity analysis. Accounting for COAMPS-TC intensity forecast bias using a quantile-matching approach, the seeded simulations suggest that the potential maximum western North Pacific TC intensities in the future extreme climate may be approximately 190 kt.


2021 ◽  
Author(s):  
Pang‐Chi Hsu ◽  
Kuan‐Chieh Chen ◽  
Chih‐Hua Tsou ◽  
Huang‐Hsiung Hsu ◽  
Chi‐Cherng Hong ◽  
...  

2020 ◽  
Author(s):  
Long Yang ◽  
Maofeng Liu ◽  
Lachun Wang ◽  
Xiaomin Ji ◽  
Xiang Li ◽  
...  

<p>Riverine flooding associated with landfalling tropical cyclones (TCs) in the Western North Pacific basin is responsible for some of the most severe socioeconomic losses in East Asian countries. However, little is known about the spatial and temporal patterns of TC flooding and its synoptic controls, which constrain predictive understandings of flood risk in this highly populated region. In this study, we investigate hydrology, hydrometeorology, and hydroclimatology of riverine flooding over China induced by landfalling tropical cyclones, based on empirical analysis of dense networks of stream gauging and rainfall stations as well as downscaling simulations using the Weather Research and Forecasting (WRF) model driven by 20th Century Reanalysis fields. The most extreme floods in central and northeastern China are associated with TCs despite infrequent TC visits in these regions. Inter-annual variations in TC flooding demonstrate a mixture of climate controls tied to surface temperature anomalies in central tropical Pacific, western North Pacific and north Atlantic. We implement numerical modelling analysis of typhoon Nina (1975), typhoon Andy (1982) and typhoon Herb (1996) to further shed light on key hydro-meteorological features of landfalling TCs that are responsible for severe flooding over China. We highlight the important role of interactions of storm circulations with mid-latitude synoptic systems (e.g., upper-level trough) and complex terrains in producing extreme rain rates and flooding. Analytical framework developed in this study aims to explore utilization of hydro-meteorological approach in flood-control engineering designs by providing details on the key elements of flood-producing storms. We also highlight potential challenges of developing predictive tools of TC flood risk in east Asian countries.</p>


2020 ◽  
Author(s):  
Chao-An Chen ◽  
Huang-Hsiung Hsu

<p>In this study, we estimate the changes in extreme precipitation indices over the western North Pacific and East Asia region (WNP-EA) during the spring and Mei-yu seasons in the warmer climate. Our analyses are based on two high-resolution atmospheric general circulation model simulations. The high-resolution atmospheric Model (HiRAM) was used in a series of simulations, which were forced by 4 sets of sea surface temperature (SST) changes under Representative Concentration Pathways 8.5 (RCP8.5) scenario. The Database for Policy Decision-Making for Future Climate Change (d4PDF) consists of global warming simulation outputs from MRI-AGCM3.2 with large ensemble members and multiple SST warming scenarios.</p><p>In the spring season, the changes in the spatial pattern of SDII, RX1day, and PR99 demonstrate greater enhancement over the northern flank of the climatological rainy region in both HiRAM and d4PDF, implying a northward extension of spring rain band. Besides, the changes in probability distribution display a shifting tendency that heavier extreme events occur more frequently in the warmer climate. The above changes are larger than the internal variability and uncertainty associated with SST warming patterns, indicating the robustness of the projected enhancement in precipitation intensity in the WNP-EA region. The spatial pattern for changes in CDD and total rainfall occurrence are less consistent between two datasets. In the Mei-yu season, the tendency toward more frequent extreme events in the probability distributions are consistently found in HiRAM and d4PDF. However, the changes in the spatial pattern of all indices are less consistent between HiRAM and d4PDF, implying larger uncertainty in the projection of extreme precipitation in the Mei-yu period in the warmer climate.</p>


2019 ◽  
Vol 53 (9-10) ◽  
pp. 5583-5605 ◽  
Author(s):  
Chao-An Chen ◽  
Huang-Hsiung Hsu ◽  
Chi-Cherng Hong ◽  
Ping-Gin Chiu ◽  
Chia-Ying Tu ◽  
...  

2018 ◽  
Vol 31 (2) ◽  
pp. 853-862 ◽  
Author(s):  
Si Gao ◽  
Zhifan Chen ◽  
Wei Zhang

This study examines the impacts of tropical North Atlantic (TNA) sea surface temperature anomaly (SSTA) on western North Pacific (WNP) landfalling tropical cyclones (TCs). The authors find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia. TNA SSTA influences the frequency of TC landfalls in these regions by regulating TC genesis location and frequency associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations over the South China Sea (SCS) and western Philippine Sea (WPS), and larger low-level relative vorticity, higher midlevel relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP (EWNP). More TCs forming over different regions are important for more TC landfalls in Vietnam (mainly forming over the SCS and WPS), south China (predominantly forming over the SCS), Taiwan (mostly forming over the WPS), and the Korean Peninsula and Japan (forming over the WPS and EWNP). Tracks of these landfalling TCs basically follow the mean steering flow in spite of different directions of steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies: the Indian Ocean relaying effect and the subtropical eastern Pacific relaying effect. The results of this study suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia.


Sign in / Sign up

Export Citation Format

Share Document