Statistical–Dynamical Seasonal Forecast of Western North Pacific and East Asia Landfalling Tropical Cyclones using the GFDL FLOR Coupled Climate Model

2017 ◽  
Vol 30 (6) ◽  
pp. 2209-2232 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Gabriele Villarini ◽  
Hiroyuki Murakami ◽  
Richard Gudgel ◽  
...  

Abstract This study attempts to improve the prediction of western North Pacific (WNP) and East Asia (EA) landfalling tropical cyclones (TCs) using modes of large-scale climate variability [e.g., the Pacific meridional mode (PMM), the Atlantic meridional mode (AMM), and North Atlantic sea surface temperature anomalies (NASST)] as predictors in a hybrid statistical–dynamical scheme, based on dynamical model forecasts with the GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 with flux adjustments (FLOR-FA). Overall, the predictive skill of the hybrid model for the WNP TC frequency increases from lead month 5 (initialized in January) to lead month 0 (initialized in June) in terms of correlation coefficient and root-mean-square error (RMSE). The hybrid model outperforms FLOR-FA in predicting WNP TC frequency for all lead months. The predictive skill of the hybrid model improves as the forecast lead time decreases, with values of the correlation coefficient increasing from 0.56 for forecasts initialized in January to 0.69 in June. The hybrid models for landfalling TCs over the entire East Asian (EEA) coast and its three subregions [i.e., southern EA (SEA), middle EA (MEA), and northern EA (NEA)] dramatically outperform FLOR-FA. The correlation coefficient between predicted and observed TC landfall over SEA increases from 0.52 for forecasts initialized in January to 0.64 in June. The hybrid models substantially reduce the RMSE of landfalling TCs over SEA and EEA compared with FLOR-FA. This study suggests that the PMM and NASST/AMM can be used to improve statistical/hybrid forecast models for the frequencies of WNP or East Asia landfalling TCs.

2018 ◽  
Vol 31 (19) ◽  
pp. 7739-7749 ◽  
Author(s):  
Si Gao ◽  
Langfeng Zhu ◽  
Wei Zhang ◽  
Zhifan Chen

This study finds a significant positive correlation between the Pacific meridional mode (PMM) index and the frequency of intense tropical cyclones (TCs) over the western North Pacific (WNP) during the peak TC season (June–November). The PMM influences the occurrence of intense TCs mainly by modulating large-scale dynamical conditions over the main development region. During the positive PMM phase, anomalous off-equatorial heating in the eastern Pacific induces anomalous low-level westerlies (and cyclonic flow) and upper-level easterlies (and anticyclonic flow) over a large portion of the main development region through a Matsuno–Gill-type Rossby wave response. The resulting weaker vertical wind shear and larger low-level relative vorticity favor the genesis of intense TCs over the southeastern part of the WNP and their subsequent intensification over the main development region. The PMM index would therefore be a valuable predictor for the frequency of intense TCs over the WNP.


2020 ◽  
Author(s):  
Long Yang ◽  
Maofeng Liu ◽  
Lachun Wang ◽  
Xiaomin Ji ◽  
Xiang Li ◽  
...  

<p>Riverine flooding associated with landfalling tropical cyclones (TCs) in the Western North Pacific basin is responsible for some of the most severe socioeconomic losses in East Asian countries. However, little is known about the spatial and temporal patterns of TC flooding and its synoptic controls, which constrain predictive understandings of flood risk in this highly populated region. In this study, we investigate hydrology, hydrometeorology, and hydroclimatology of riverine flooding over China induced by landfalling tropical cyclones, based on empirical analysis of dense networks of stream gauging and rainfall stations as well as downscaling simulations using the Weather Research and Forecasting (WRF) model driven by 20th Century Reanalysis fields. The most extreme floods in central and northeastern China are associated with TCs despite infrequent TC visits in these regions. Inter-annual variations in TC flooding demonstrate a mixture of climate controls tied to surface temperature anomalies in central tropical Pacific, western North Pacific and north Atlantic. We implement numerical modelling analysis of typhoon Nina (1975), typhoon Andy (1982) and typhoon Herb (1996) to further shed light on key hydro-meteorological features of landfalling TCs that are responsible for severe flooding over China. We highlight the important role of interactions of storm circulations with mid-latitude synoptic systems (e.g., upper-level trough) and complex terrains in producing extreme rain rates and flooding. Analytical framework developed in this study aims to explore utilization of hydro-meteorological approach in flood-control engineering designs by providing details on the key elements of flood-producing storms. We also highlight potential challenges of developing predictive tools of TC flood risk in east Asian countries.</p>


2018 ◽  
Vol 31 (2) ◽  
pp. 853-862 ◽  
Author(s):  
Si Gao ◽  
Zhifan Chen ◽  
Wei Zhang

This study examines the impacts of tropical North Atlantic (TNA) sea surface temperature anomaly (SSTA) on western North Pacific (WNP) landfalling tropical cyclones (TCs). The authors find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia. TNA SSTA influences the frequency of TC landfalls in these regions by regulating TC genesis location and frequency associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations over the South China Sea (SCS) and western Philippine Sea (WPS), and larger low-level relative vorticity, higher midlevel relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP (EWNP). More TCs forming over different regions are important for more TC landfalls in Vietnam (mainly forming over the SCS and WPS), south China (predominantly forming over the SCS), Taiwan (mostly forming over the WPS), and the Korean Peninsula and Japan (forming over the WPS and EWNP). Tracks of these landfalling TCs basically follow the mean steering flow in spite of different directions of steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies: the Indian Ocean relaying effect and the subtropical eastern Pacific relaying effect. The results of this study suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia.


2016 ◽  
Vol 48 (7-8) ◽  
pp. 2419-2435 ◽  
Author(s):  
Wenqiang Shen ◽  
Jianping Tang ◽  
Yuan Wang ◽  
Shuyu Wang ◽  
Xiaorui Niu

2018 ◽  
Vol 35 (4) ◽  
pp. 423-434
Author(s):  
Shumin Chen ◽  
Weibiao Li ◽  
Zhiping Wen ◽  
Mingsen Zhou ◽  
Youyu Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document