Sea surface density gradients in the Nordic Seas during the Holocene as revealed by paired microfossil and isotope proxies

2016 ◽  
Vol 31 (3) ◽  
pp. 380-398 ◽  
Author(s):  
Nicolas Van Nieuwenhove ◽  
Claude Hillaire-Marcel ◽  
Henning A. Bauch ◽  
Anne de Vernal
The Holocene ◽  
2016 ◽  
Vol 26 (5) ◽  
pp. 722-735 ◽  
Author(s):  
Nicolas Van Nieuwenhove ◽  
Astrid Baumann ◽  
Jens Matthiessen ◽  
Sophie Bonnet ◽  
Anne de Vernal

2013 ◽  
Vol 9 (4) ◽  
pp. 1629-1643 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.


2019 ◽  
Vol 34 (7) ◽  
pp. 569-580 ◽  
Author(s):  
Myriam Caron ◽  
André Rochon ◽  
Jean‐Carlos Montero‐Serrano ◽  
Guillaume St‐Onge

Sign in / Sign up

Export Citation Format

Share Document