scholarly journals A formulation for vertically integrated groundwater flow in a stratified coastal aquifer

2015 ◽  
Vol 51 (8) ◽  
pp. 6756-6775 ◽  
Author(s):  
O. D. L. Strack ◽  
B. K. Ausk
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


2021 ◽  
Author(s):  
Emmanouil Varouchakis ◽  
Leonardo Azevedo ◽  
João L. Pereira ◽  
Ioannis Trichakis ◽  
George P. Karatzas ◽  
...  

<p>Groundwater resources in Mediterranean coastal aquifers are under threat due to overexploitation and climate change impacts, resulting in saltwater intrusion. This situation is deteriorated by the absence of sustainable groundwater resources management plans. Efficient management and monitoring of groundwater systems requires interpreting all sources of available data. This work aims at the development of a set of plausible 3D geological models combining 2D geophysical profiles, spatial data analytics and geostatistical simulation techniques. The resulting set of models represents possible scenarios of the structure of the coastal aquifer system under investigation. Inverted resistivity profiles, along with borehole data, are explored using spatial data science techniques to identify regions associated with higher uncertainty. Relevant parts of the profiles will be used to generate 3D models after detailed Anisotropy and variogram analysis. Multidimensional statistical techniques are then used to select representative models of the true subsurface while exploring the uncertainty space. The resulting models will help to identify primary gaps in existing knowledge about the groundwater system and to optimize the groundwater monitoring network. A comparison with a numerical groundwater flow model will identify similarities and differences and it will be used to develop a typical hydrogeological model, which will aid the management and monitoring of the area's groundwater resources. This work will help the development of a reliable groundwater flow model to investigate future groundwater level fluctuations at the study area under climate change scenarios.</p><p> </p><p>This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 1923.</p>


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2343 ◽  
Author(s):  
Woo-Dong Lee ◽  
Young-Jae Yoo ◽  
Yeon-Myeong Jeong ◽  
Dong-Soo Hur

In this study, hydraulic model experiments were conducted to measure the saltwater–freshwater equilibrium interface in a coastal aquifer with underground obstructions such as an impermeable seawall. To analyse the hydraulic characteristics inside the coastal aquifer, numerical analysis was conducted using a non-hydrostatic Navier-Stokes solver based on the Porous Body Model (PBM), which can directly analyse groundwater flow. A unique saltwater–freshwater equilibrium interface that does not appear in typical coastal aquifer analyses was observed in a sandy tank experiment. In the experiment, the rise of the groundwater level behind the seawall increased the pressure gradient and groundwater flow rate, causing the saltwater–freshwater interface to move towards the sea and a freshwater region to form on the seabed in front of the seawall. The numerical analysis enabled close examination of the groundwater level distribution, groundwater flow, seawater–freshwater interface, and pore water pressure characteristics of the coastal aquifer with underground obstructions. The sandy tank experiment also provided an understanding of the hydraulic characteristics of groundwater in the coastal aquifer with a seawall, which previously could not be accurately analysed. The experimental and analytical results demonstrated that the rise of groundwater level due to underground obstructions in the coastal aquifer increased the pressure gradient and groundwater flow rate and slowed seawater intrusion. This principle can be employed to sufficiently reduce seawater intrusion of coastal aquifers.


2021 ◽  
Vol 10 (3) ◽  
pp. 41-51
Author(s):  
Khaled Harizi ◽  
Mohamed Reda Menani ◽  
Nabil Chabour ◽  
Sofiane Labar

The Bouteldja coastal aquifer is one of the most important groundwater resources in North eastern of Algeria. The region is under a sub-humid climate with an average rainfall of 600-880 mm/y. The unconfined aquifer is constituted of Quaternary sands formations. The hydrogeological characteristics were determined based on previous reports. A very important inflow recharges the sandy aquifer in the Southeastern boundary, in relation to a fault network system linking the aquifer and the Obeira Lake area. Another inflow is observed at the Southern boundary in relation to the exchanges with the alluvial aquifer of Bouteldja. The purpose of the present study is to provide an initial assessment of the groundwater flow and water budget of this aquifer. To achieve this goal, a one-layer groundwater flow numerical model was developed using the MODFLOW-2005 code and the FREEWAT software, using the available data. The model was run in steady state conditions. Calibration was achieved using the piezometric measurements of May 2018 as calibration target. After several trials of manual calibrations, the model successfully simulated the groundwater flows directions and heads. Calibration efforts lead to an acceptable concordance (for the purpose of this study) between the estimated and calculated hydraulic conductivity and piezometric heads, except at the Eastern border. The analyses of the simulated inflow budget shows that aside the rainfall infiltration, exchanges with surface water bodies, the adjoining alluvial aquifer and the fault system provide a relevant amount of water. This significant recharge needs additional investigations. This numerical modeling exercise using MODFLOW, the FREEWAT software and GIS reached the objective of a preliminary description of the groundwater flow and it represents an acceptable starting point for more thorough hydrodynamic characterization of the Bouteldja coastal aquifer.


2006 ◽  
Vol 330 (3-4) ◽  
pp. 525-542 ◽  
Author(s):  
Kue-Young Kim ◽  
Hyeonjeong Seong ◽  
Taehee Kim ◽  
Ki-Hwa Park ◽  
Nam-Chil Woo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document