Common Bean Rust: Pathology and Control

2010 ◽  
pp. 1-99 ◽  
Author(s):  
Merion M. Liebenberg ◽  
Zacharias A. Pretorius
Keyword(s):  
2005 ◽  
Vol 111 (5) ◽  
pp. 972-979 ◽  
Author(s):  
C. M. S. Mienie ◽  
M. M. Liebenberg ◽  
Z. A. Pretorius ◽  
P. N. Miklas

Bragantia ◽  
2016 ◽  
Vol 75 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Daiana Alves da Silva ◽  
Jose Antonio de Fatima Esteves ◽  
João Guilherme Ribeiro Gonçalves ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Tamires Ribeiro ◽  
...  

ABSTRACT Common bean is one of the most important legumes in Latin America, mostly grown in soils with low phosphorus (P) availability. Thus, this study aimed to evaluate the responses of 20 bean genotypes to P deficiency. The experiment was a completely randomized design in a 2 × 20 factorial arrangement; the first factor consisted of P levels and the second factor, of 20 bean genotypes, with six replications. The substrate was a Red Eutrophic Oxisol with low P content. For application of the P treatments, it was applied simple superphosphate, consisting of two levels: restrictive and control, with the application of 45 and 90 kg∙ha–1 of P2O5, respectively. At 28 days, we observed the first symptoms of nutrient deficiency, with the decrease in the relative chlorophyll index in the restrictive level treatment. In addition, the treatments were effective in differentiating effects of both factors levels of P and genotypes for most traits evaluated relative to shoot, root and grain yield. It was possible to classify the genotypes in relation to use efficiency and responsiveness to P application, according to their average yield performances. Seven genotypes presented better performances for both P levels, being classified as Efficient and Responsive: G 2333, IAC Carioca Tybatã, IAPAR 81, IAC Imperador, IAC Formoso, BRS Esplendor and IPR Tangará; the first four genotypes were also classified as Efficient and Responsive under hydroponic conditions.


Revista CERES ◽  
2017 ◽  
Vol 64 (5) ◽  
pp. 532-539
Author(s):  
Maria da Conceição Santana Carvalho ◽  
Adriano Stephan Nascente ◽  
Gilvan Ferreira Barbosa ◽  
Celso Américo Pedro Mutadiua ◽  
José Eloir Denardin

ABSTRACT The demonstration of yield potential of crops depends on genetic factors, favorable conditions of envi ronment, and management. The sowing time can significantly affect the common bean grain yield. The aim of this research was to study the behavior of Brazilian cultivars and sowing times on the yield components and grain yield of common bean grown in the environmental conditions of Lichinga, Province of Niassa, Mozambique. The field trial was performed for two growing seasons, using the experimental as a randomized block in factorial 5 × 3 × 2, with four replications. The treatments consisted of the combination of five common bean cultivars (BRS Pontal, BRS Agreste, Perola, and BRS Requinte, developed by Brazilian Agricultural Research Corporation (Embrapa), and a local variety, Encarnada) with three sowing dates (beginning of the rainy season, and 15 and 30 days after), during two growing seasons. The Brazilian cultivar of common beans BRS Pontal was the most productive in all sowing times, followed by BRS Agreste, which was not the most productive only in the second sowing time of 2013/2014 growing season. The cultivar Encarnada, from Mozambique, was the less productive cultivar in all sowing times and in all growing seasons. The best sowing time for common bean cultivars is in the beginning of the rainy season. The use of technologies such as use of seeds of new cultivars, proper sowing time, fertilization, and control of weeds allow significant increase of common bean grain yield in Lichinga, Mozambique.


2021 ◽  
Author(s):  
Marcilene Machado dos Santos Sarah ◽  
Renato de Mello Prado ◽  
Jonas Pereira de Souza Júnior ◽  
Gelza Carliane Marques Teixeira ◽  
João Carlos dos Santos Duarte ◽  
...  

Abstract Potassium (K) deficiency affects physiological performance and decreasing vegetative growth in common bean plants. However, silicon (Si) supplied via nutrient solution or foliar application may relieve nutritional stress. Thus, two experiments were carried out: initially, a test was performed to determine the best source and concentration of leaf-applied Si. Subsequently, the chosen Si source was applied via nutrient solution or via leaf to verify if it is efficient in alleviating the effects caused by K deficiency. To that end, a completely randomized 2 x 3 factorial design was used, with two levels of K: deficient (0.2 mmol L− 1 of K) and sufficient (6 mmol L− 1 of K); and Si: via nutrient solution (2 mmol L− 1 of Si) or foliar spray (5.4 mmol L− 1 of Si) and control (0 mmol L− 1 of Si). In the first experiment, foliar spraying with sodium silicate and stabilized potassium at a concentration of 5.4 mmol L− 1 was better in favoring the physiology of bean plants. In the second experiment, K deficiency without the addition of Si compromised the plant's growth. Si applied through nutrient solution or foliar spray relieved K deficiency stress, increasing chlorophylls and carotenoids content, photosynthetic activity, water use efficiency and vegetative growth.


1994 ◽  
Vol 125 (3) ◽  
pp. 601-605 ◽  
Author(s):  
B R EDINGTON ◽  
P E SHANAHAN ◽  
J LEVIN ◽  
F H J RIJKENBERG

2016 ◽  
Vol 49 (19-20) ◽  
pp. 522-532 ◽  
Author(s):  
Mansour M. El-Fawy ◽  
Kamal A. M. Abo-Elyousr

Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 698-704 ◽  
Author(s):  
M. R. Miles ◽  
M. A. Pastor-Corrales ◽  
G. L. Hartman ◽  
R. D. Frederick

Soybean rust (Phakopsora pachyrhizi) has been reported on common bean (Phaseolus vulgaris) in Asia, South Africa, and the United States. However, there is little information on the interaction of individual isolates of Phakopsora pachyrhizi with common bean germplasm. A set of 16 common bean cultivars with known genes for resistance to Uromyces appendiculatus, the causal agent of common bean rust, three soybean accessions that were sources of the single gene resistance to P. pachyrhizi, and the moderately susceptible soybean ‘Ina’ were evaluated using seedlings inoculated with six isolates of P. pachyrhizi. Among the common bean cultivars, Aurora, Compuesto Negro Chimaltenango, and Pinto 114, were the most resistant to all six P. pachyrhizi isolates, with lower severity, less sporulation, and consistent reddish-brown (RB) lesions associated with resistance in soybean. A differential response was observed among the common bean cultivars, with a cultivar-isolate interaction for both severity and sporulation levels, as well as the presence or absence of the RB lesion type. This differential response was independent of the known genes that condition resistance to U. appendiculatus, suggesting that resistance to P. pachyrhizi was independent of resistance to U. appendiculatus.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 653-653 ◽  
Author(s):  
G. A. Bardas ◽  
G. T. Tziros ◽  
K. Tzavella-Klonari

Common bean (Phaseolus vulgaris L.) is cultivated extensively in Greece for dry and fresh bean production. During 2005 and 2006, a disease with typical blight symptoms was observed occasionally on dark red kidney, brown kidney, and black bean plants in most bean-producing areas of Greece. It rarely was destructive unless the crop had been weakened by some unfavorable environmental conditions. Infected leaves had brown-to-black lesions that developed concentric zones 10 to 30 mm in diameter and also contained small, black pycnidia. Concentric dark gray-to-black lesions also appeared on branches, stems, nodes, and pods. Infected seeds turned brown to black. Plants sometimes showed defoliation and pod drop. The fungus was consistently isolated on potato dextrose agar from diseased leaves and pods and identified as Phoma exigua var. exigua Sutton and Waterstone on the basis of morphological characteristics of conidia and pycnidia (1,2). Spores were massed in pycnidia from which they were forced in long, pink tendrils under moist weather conditions. Conidia were cylindrical to oval, allantoid, hyaline, pale yellow to brown, usually one-celled, and 2 to 3 × 5 to 10 μm. To satisfy Koch's postulates, a conidial suspension (1 × 106 conidia per ml) of the fungus was sprayed onto leaves and stems of bean seedlings (first-leaf stage) (cv. Zargana Hrisoupolis). Both inoculated and control seedlings (inoculated with sterile water) were covered with plastic bags for 72 h in a greenhouse at 23°C. Inoculated plants showed characteristic symptoms of Ascochyta leaf spot 12 to 15 days after inoculation. The fungus was reisolated from lesions that developed on the leaves and stems of all inoculated plants. The pathogen is present worldwide on bean. To our knowledge, this is the first report of P. exigua var. exigua on common bean in Greece. References: (1) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2007. (2) B. C. Sutton and J. M. Waterstone. Ascochyta phaseolorum. No. 81 in: Descriptions of Pathogenic Fungi and Bacteria. CMI/AAB, Kew, Surrey, England, 1966.


2021 ◽  
Vol 19 (2) ◽  
pp. 113-121
Author(s):  
M. Koleva ◽  
Iv. Kiryakov

Bean rust, caused by Uromyces appendiculatus, is a major disease in common bean which occurs annually in The Rhodope Mountains and sporadic in the plains of Bulgaria. The present study aims to find sources of resistance in common bean to the pathogen for using in a breeding program. The reaction of fifty-five Phaseolus vulgaris accessions to the pathogen was monitored under field condition. Infection type, disease intensity and area under the disease progress curve were calculated. Twelve common bean cultivars were inoculated with eight pathotypes of races 20-2, 20-16, and 20-18 in the greenhouse, and infection type was estimated. Twelve accessions had an immune reaction, eight accessions had resistant a reaction, two accessions had a middle resistant reaction, and seven accessions had a susceptible reaction to U. appendiculatus population in both field estimations. Five cultivars showed resistant phenotype to the eight pathotypes in the greenhouse, four of which were resistant in the field (Abritus, Beslet, Trakiya, and Prelom). Five cultivars had a susceptible or resistant reaction to the pathotypes of the same race, resulting from different interaction between resistant genes in the host and virulent genes in the pathogen. Nine accessions showed race-nonspecific resistance in the field expressed in low disease intensity and susceptible/resistant phenotype.


Sign in / Sign up

Export Citation Format

Share Document