scholarly journals Evaluation of common bean genotypes for phosphorus use efficiency in Eutrophic Oxisol

Bragantia ◽  
2016 ◽  
Vol 75 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Daiana Alves da Silva ◽  
Jose Antonio de Fatima Esteves ◽  
João Guilherme Ribeiro Gonçalves ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Tamires Ribeiro ◽  
...  

ABSTRACT Common bean is one of the most important legumes in Latin America, mostly grown in soils with low phosphorus (P) availability. Thus, this study aimed to evaluate the responses of 20 bean genotypes to P deficiency. The experiment was a completely randomized design in a 2 × 20 factorial arrangement; the first factor consisted of P levels and the second factor, of 20 bean genotypes, with six replications. The substrate was a Red Eutrophic Oxisol with low P content. For application of the P treatments, it was applied simple superphosphate, consisting of two levels: restrictive and control, with the application of 45 and 90 kg∙ha–1 of P2O5, respectively. At 28 days, we observed the first symptoms of nutrient deficiency, with the decrease in the relative chlorophyll index in the restrictive level treatment. In addition, the treatments were effective in differentiating effects of both factors levels of P and genotypes for most traits evaluated relative to shoot, root and grain yield. It was possible to classify the genotypes in relation to use efficiency and responsiveness to P application, according to their average yield performances. Seven genotypes presented better performances for both P levels, being classified as Efficient and Responsive: G 2333, IAC Carioca Tybatã, IAPAR 81, IAC Imperador, IAC Formoso, BRS Esplendor and IPR Tangará; the first four genotypes were also classified as Efficient and Responsive under hydroponic conditions.

2021 ◽  
Vol 12 ◽  
Author(s):  
Amira Beroueg ◽  
François Lecompte ◽  
Alain Mollier ◽  
Loïc Pagès

Low phosphorus (P) bioavailability in the soil and concerns over global P reserves have emphasized the need to cultivate plants that acquire and use P efficiently. Root architecture adaptation to low P can be variable depending on species or even genotypes. To assess the genetic variability of root architectural traits and their responses to low P in the Lactuca genus, we examined fourteen genotypes including wild species, ancient and commercial lettuce cultivars at low (LP, 0.1 mmol. L–1) and high P (HP, 1 mmol. L–1). Plants were grown in cylindrical pots adapted for the excavation and observation of root systems, with an inert substrate. We identified substantial genetic variation in all the investigated root traits, as well as an effect of P availability on these traits, except on the diameter of thinner roots. At low P, the main responses were a decrease in taproot diameter, an increase in taproot dominance over its laterals and an increase in the inter-branch distance. Although the genotype x P treatment effect was limited to root depth, we identified a tradeoff between the capacity to maintain a thick taproot at low P and the dominance of the taproot over its laterals. Regardless of the P level, the phosphorus-use-efficiency (PUE) varied among lettuce genotypes and was significantly correlated with total root biomass regardless of the P level. As taproot depth and maximum apical diameter were the principal determinants of total root biomass, the relative increase in PUE at low P was observed in genotypes that showed the thickest apical diameters and/or those whose maximal apical diameter was not severely decreased at low P availability. This pre-eminence of the taproot in the adaptation of Lactuca genotypes to low P contrasts with other species which rely more on lateral roots to adapt to P stress.


2020 ◽  
Vol 80 (04) ◽  
Author(s):  
Harsh Kumar Dikshit ◽  
Venkata Ravi Prakash Reddy ◽  
Gyan Prakash Mishra ◽  
Muraleedhar Aski ◽  
Renu Pandey ◽  
...  

Phosphorus (P) deficiency is one of the serious problems affecting plant growth in mungbean in different parts of the world. The root, shoot and biomass related traits were investigated for identifying P-efficient genotypes in 54 mungbean genotypes under low-P (LP) and normal-P (NP) conditions. In this study, the membership function value of P use efficiency of studied traits was used as a compendious index for studying P use efficiency (PUE) in mungbean. Among the studied traits, mean values of total root volume, chlorophyll concentration, root dry weight (RDW) and root to shoot ratio increased >25% under LP condition indicating that these traits are highly responsive to P deficiency. Correlation and stepwise regression analysis revealed that RDW explained most of the variation and could be used as a clear indicator of PUE. The five highly P-efficient genotypes namely, MH 805, M 42, PUSA 9531, EC 398885 and M 209 with high MFVP values may be used for PUE improvement in mungbean.


2015 ◽  
Vol 15 (2) ◽  
pp. 59-65 ◽  
Author(s):  
Flávia Ferreira Mendes ◽  
Lauro José Moreira Guimarães ◽  
Cláudia Teixeira Guimarães ◽  
João Cândido Souza ◽  
Paulo Evaristo Oliveira Guimarães ◽  
...  

Knowing the inheritance of traits is essential to establish selection strategies in breeding programs. The aim of this study was to determine the genetic control of traits related to the phosphorus use efficiency in maize. A total of 280 progenies were developed according to design III, which were evaluated in the field under high and low phosphorus (P) availability. The genetic variance components were estimated for the agronomic traits and indices that define P use efficiency. The results indicated that the additive and dominance effects were important in explaining the genetic variability for the flowering time, grain yield and P efficiency indices. However, dominance effects prevailed, indicating that breeding efforts should be made to develop hybrids exploiting the heterosis for traits related to P use efficiency.


2015 ◽  
Vol 2 (2) ◽  
pp. 271-277
Author(s):  
Ahmed Khairul Hasan ◽  
Md Ashiquzzaman ◽  
Quazi Forhad Quadir ◽  
Istiaq Ahmed

A pot experiment was conducted in the net house of the Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh during the period from October, 2012 to April, 2013 to compare the phosphorus use efficiency (PUE) as well as the effect of phosphorus (P) on yield and quality of six varieties of lentil and grass pea (three from each crop). The experiment was laid out in a Completely Randomized Design (CRD) with two treatments and three replications. Treatments included optimum phosphorus (P) dose i.e. @ 25 kg P ha-1 (P1) and control (P0). Among the observed parameters, application of P fertilizer had performed better over control (P0) in all varieties of lentil and grass pea. Among the three varieties of lentil (viz. BARI masur-5, BARI masur-6 and BARI masur-7), the best yield performance was observed in BARI masur-5. Similarly, among the three varieties of grass pea, (viz. BINA khesari-1, BARI khesari-1 and BARI khesari-2), BINA khesari-1 showed the best yield performance. In lentil varieties, BARI Masur-5 produced the highest seed yield (2.78 g pot-1), whereas, BINA kheshari-1 gave the highest yield (3.38 g pot-1) among grass pea varieties. In case of lentil and grass pea varieties, highest seed P contents were observed in BARI masur-5 (1.36%) and BINA khesari-1 (1.22%) varieties, respectively. Maximum PUE (192.5%) for lentil varieties was found in BARI masur-5 and that of (234.0%) for grass pea varieties was in BINA khesari-1. On the other hand, P used per unit seed yield in lentil and grass pea was highest in BARI masur-5 and BINA khesari-1, respectively. Therefore, our farmer can be benefitted by cultivating BARI masur-5 and BINA khesari-1 through maximized yield using less amount of P fertilizers.Res. Agric., Livest. Fish.2(2): 271-277, August 2015


2021 ◽  
Vol 12 ◽  
Author(s):  
Leangsrun Chea ◽  
Ana Meijide ◽  
Catharina Meinen ◽  
Elke Pawelzik ◽  
Marcel Naumann

The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (Plow, Pmed, and Phigh). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary.


2018 ◽  
Vol 49 (11) ◽  
pp. 1302-1313
Author(s):  
Dereje Shanka ◽  
Nigussie Dechassa ◽  
Setegn Gebeyehu ◽  
Eyasu Elias

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danilo Silva Almeida ◽  
Lucas Benes Delai ◽  
Alexandra Christine Helena Franklan Sawaya ◽  
Ciro Antonio Rosolem

Abstract It has been suggested that some tropical grasses can acquire phosphorus (P) from hematite and gypsite by exuding organic acid anions (OAs). However, it remains to be determined exactly which OAs could be involved in each case. The objective of this study was to verify the exudation OAs by ruzigrass (Urochloa ruziziensis), palisade grass (U. brizantha), and Guinea grass (Megathyrsus maximus) as a response to P deficiency. The grasses were grown in leachate columns with adequate and deficient P nutrient solutions. The concentration of OAs in the leacheate and root surface, as well as shoot and root dry matter, and P uptake were determined. Citrate, isocitrate, and malate concentration in leachates and root surfaces increased with P starvation, mainly for the Urochloa grasses. Oxalate exudation was similar for the grasses under adequate P supply, but was lower in Guinea grass under P starvation. Palisade grass showed a higher concentration of total OAs in the root surface than the other species due to a great production of oxalate and isocitrate. Palisade grass showed greater dry matter yields regardless of P deficiency, and Guinea grass always had the higher shoot:root ratio. Urochloa grasses have a higher capacity to cope with low P availability by exuding OAs along with a lower shoot:root ratio than Guinea grass.


Sign in / Sign up

Export Citation Format

Share Document