Coarse-Grained and Multiscale Simulations of Lipid Bilayers

Author(s):  
Harry A. Stern
Life ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 98 ◽  
Author(s):  
Carlos Navarro-Paya ◽  
Maximo Sanz-Hernandez ◽  
Alfonso De Simone

The membrane binding by α-synuclein (αS), a presynaptic protein whose aggregation is strongly linked with Parkinson’s disease, influences its biological behavior under functional and pathological conditions. This interaction requires a conformational transition from a disordered-unbound to a partially helical membrane-bound state of the protein. In the present study, we used enhanced coarse-grained MD simulations to characterize the sequence and conformational determinants of the binding to synaptic-like vesicles by the N-terminal region of αS. This region is the membrane anchor and is of crucial importance for the properties of the physiological monomeric state of αS as well as for its aberrant aggregates. These results identify the key factors that play a role in the binding of αS with synaptic lipid bilayers in both membrane-tethered and membrane-locked conformational states.


2014 ◽  
Vol 42 (5) ◽  
pp. 1418-1424 ◽  
Author(s):  
Antreas C. Kalli ◽  
Mark S. P. Sansom

Many cellular signalling and related events are triggered by the association of peripheral proteins with anionic lipids in the cell membrane (e.g. phosphatidylinositol phosphates or PIPs). This association frequently occurs via lipid-binding modules, e.g. pleckstrin homology (PH), C2 and four-point-one, ezrin, radixin, moesin (FERM) domains, present in peripheral and cytosolic proteins. Multiscale simulation approaches that combine coarse-grained and atomistic MD simulations may now be applied with confidence to investigate the molecular mechanisms of the association of peripheral proteins with model bilayers. Comparisons with experimental data indicate that such simulations can predict specific peripheral protein–lipid interactions. We discuss the application of multiscale MD simulation and related approaches to investigate the association of peripheral proteins which contain PH, C2 or FERM-binding modules with lipid bilayers of differing phospholipid composition, including bilayers containing multiple PIP molecules.


2017 ◽  
Vol 19 (10) ◽  
pp. 7195-7203 ◽  
Author(s):  
Sun Young Woo ◽  
Hwankyu Lee

Melittin and its analogue MelP5 (five mutations T10A, R22A, K23A, R24Q, and Q26L of melittin) were simulated with lipid bilayers at different peptide/lipid molar ratios using all-atom and coarse-grained (CG) force fields.


Soft Matter ◽  
2015 ◽  
Vol 11 (19) ◽  
pp. 3780-3785 ◽  
Author(s):  
Nadiv Dharan ◽  
Oded Farago

We use computer simulations of a coarse-grained molecular model of supported lipid bilayers to study the formation of adhesion domains in confined membranes, and in membranes subjected to a non-vanishing surface tension. When the membrane is subjected to compression, the condensation of the adhesion domains triggers membrane buckling.


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2047-2055 ◽  
Author(s):  
Eol Han ◽  
Hwankyu Lee

We performed coarse-grained molecular dynamics simulations of antimicrobial peptides PGLa and magainin 2 in lipid bilayers.


2020 ◽  
Author(s):  
Andreas Haahr Larsen ◽  
Mark S.P. Sansom

AbstractC2 domains facilitate protein-lipid interaction in cellular recognition and signalling processes. They possess a β-sandwich structure, with either type I or type II topology. C2 domains can interact with anionic lipid bilayers in either a Ca2+-dependent or a Ca2+-independent manner. The mechanism of recognition of anionic lipids by Ca2+-independent C2 domains is incompletely understood. We have used molecular dynamics (MD) simulations to explore the membrane interactions of six Ca2+– independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse grained MD simulations these C2 domains bound to lipid bilayers, forming transient interactions with zwitterionic (phosphatidylcholine, PC) bilayers compared to long lived interactions with anionic bilayers also containing either phosphatidylserine (PS) or PS and phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back or side of the β sandwich, whereas type II C2 domains bound canonically, via the top loops (as is typically the case for Ca2+-dependent C2 domains). C2 domains interacted strongly (up to 120 kJ/mol) with membranes containing PIP2 causing the bound anionic lipids to clustered around the protein. The C2 domains bound less strongly to anionic membranes without PIP2 (<50 kJ/mol), and most weakly to neutral membranes (<33 kJ/mol). Productive binding modes were identified and further analysed in atomistic simulations. For PTEN and SHIP2, CG simulations were also performed of the intact enzymes (i.e. phosphatase domain plus C2 domain) with PIP2-contating bilayers and the roles of the two domains in membrane localization were compared. From a methodological perspective, these studies establish a multiscale simulation protocol for studying membrane binding/recognition proteins, capable of revealing binding modes alongside details of lipid binding affinity and specificity.


2020 ◽  
Author(s):  
Sarah-Beth T. A. Amos ◽  
Thomas C. Schwarz ◽  
Jiye Shi ◽  
Benjamin P. Cossins ◽  
Terry S. Baker ◽  
...  

Abstractα-Synuclein is a presynaptic protein that binds to cell membranes and is linked to Parkinson’s disease (PD). Whilst the normal function of remains α-synuclein remains uncertain, it is thought that oligomerization of the protein on the cell membrane contributes to cell damage. Knowledge of how α-synuclein binds to lipid bilayers is therefore of great interest as a likely first step in the molecular pathophysiology of PD, and may provide insight of the phenotype of PD-promoting mutations. We use coarse-grained and atomistic simulations in conjunction with NMR and cross-linking mass spectrometry studies of α-synuclein bound to anionic lipid bilayers to reveal a break in the helical structure of the NAC region, which may give rise to subsequent oligomer formation. Coarse-grained simulations of α-synuclein show that the interhelical region leads recognition and binding to both POPG and mixed composition bilayers and identifies important protein-lipid contacts, including those in the region between the two helices in the folded structure. We extend these simulations with all-atom simulations of the initial binding event to reveal details of the time-progression of lipid binding. We present secondary structure analysis that reveals points of possible β-strand formation in the structure, and investigate intramolecular contacts with simulations and mass-spectrometry crosslinking. Additionally we show how Markov state models can be used to investigate possible conformational changes of membrane bound α-synuclein in the NAC region, and we extract representative structures. These structural insights will aid the design and development of novel therapeutic approaches.


2021 ◽  
Author(s):  
Nidhin Thomas ◽  
Ashutosh Agrawal

Lipid bilayers behave as 2D dielectric materials that undergo polarization and deformation in the presence of an electric field. This effect has been previously modeled by continuum theories which assume a polarization field oriented normal to the membrane surface. However, the molecular architecture of the lipids reveals that the heqadgroup dipoles are primarily oriented tangential to the membrane surface. Here, we perform atomistic and coarse-grained molecular dynamics simulations to quantify the in-plane polarization undergone by a flat bilayer and a spherical vesicle in the presence of an applied electric field. We use these predictions to compute an effective in-plane flexoelectric coefficient for four different lipid types. Our findings provide the first molecular proof of the in-plane polarization undergone by lipid bilayers and furnish the material parameter required to quantify membrane-electric field interactions.


Sign in / Sign up

Export Citation Format

Share Document