A Microstructure-Strength Calculation Model for Predicting Tensile Strength of AlSi7Mg Alloy Castings

Author(s):  
Yufeng Shi ◽  
Qingyan Xu ◽  
Rui Chen ◽  
Baicheng Liu ◽  
Qinfang Wu ◽  
...  
2010 ◽  
Vol 146-147 ◽  
pp. 546-550
Author(s):  
Cheng Qian

The synthetic leather base is a composite, with the top and lower layers are nonwovens and the middle is woven fabrics. Firstly, the single rip tearing strength and drawing out resistances of the leather base were tested and tearing failure mechanics were analyzed. Then on the above basis, the single rip tearing strength calculation model of the synthetic leather base was built successfully. From theoretical model, main influencing factors are the weft and warp yarn breaking strength and the density of warp and weft yarns in the woven fabric, and also drawing out resistance of the leather base. Finally, experimental verification was made for the established model, which shows that theoretical values conform to the measured values well.


2015 ◽  
Vol 1104 ◽  
pp. 149-153
Author(s):  
Yeong Sant Kuo

Systematic change of riser size together with variation of thickness and length of A201 aluminum alloy plate castings were studied to investigate the correlation between mechanical properties and porosity content. The molds with end chill for plate castings were made of 100% chromite sand by CO2 process. If soundness throughout the whole plate casting has to be guaranteed, the riser diameter should be proper design to the dimension of the plate. The tensile strength and elongation of A201 aluminum alloy plate casting is governed by riser diameter, thickness, and length of the plate.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Lei Liu ◽  
Shengyou Zhang ◽  
Weidong Liu ◽  
Wei Sun ◽  
Jinxin Li

Proper determination of the shear strength of the backfill body used to fill the subsidence is the basis for subsidence restoration and the stability analysis of materials. This study developed a shear strength calculation model for the backfill body by introducing adhesive friction theory into the shear strength analysis. A direct shear test was performed in the laboratory to verify the proposed method. Test results suggested that the shear strength calculation method based on adhesive friction theory can calculate the variation in the actual contact area between grains in the tested samples undergoing shearing and estimate the peak shear strength. The actual contact area was divided into two components, namely, adhesive contact area Arm and contact area reduction caused by shear displacement, which exhibited a maximum at Armax. The shear strength values calculated by this method were smaller than laboratory values, and their differences increased with the rock proportion in the backfill body. The differences between the theoretical and experimental values of shear strength increased with the rock grain size. The results of theoretical calculation, combined with the results of laboratory experiments, can provide support for the proper determination of shear strength of the backfill body.


2011 ◽  
Vol 311-313 ◽  
pp. 1916-1919 ◽  
Author(s):  
Yan Wei Sui ◽  
Ai Hui Liu ◽  
Bang Sheng Li ◽  
Jing Jie Guo

Titanium alloy castings are made by means of induction melting technology. The relationships thickness of lamellar α+β phase and tensile strength, yield strength, elongation percentage, and Vickers-hardness, as well as the effect of tensile property on the Vickers-hardness are investigated for Ti-6Al-4V alloy castings. The results show that the relationships between thickness of lamellar α+β phase, and tensile strength, yield strength, specific elongation, and Vickers-hardness meet the Hall-Petch equation. And the tensile property increases linearly with Vickers-hardness.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Zhao Xiaojiao ◽  
Qu Zhan ◽  
Xu Xiaofeng ◽  
Yu Xiaocong ◽  
Fan Heng ◽  
...  

In this paper, a comprehensive model to calculate the rock fracture pressure by the theory of double effective stress of porous medium is established, which considers such effective factors as the crustal stress field, hydration stress field, temperature field, tectonic stress field, the porosity of rock, and additional stress field generated by seepage of drilling fluid. This new model is applicable to predict the fracture pressure of different types of rocks. Using the experimental parameters of field fracturing and the experimental results of three-axis compression of rock cores with different water contents, we may get the calculated fracture pressure. Compared with the measured fracture pressure in the oilfield, the result calculated in the present study shows good agreement. Besides, the effects of water contents on the tensile strength and fracture pressure are analyzed. Results show that both the tensile strength and fracture pressure decrease with the increase of water contents, which is due to the reduction of the mechanical properties of rocks by hydration.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 160
Author(s):  
Mahmoud Ahmed El-Sayed ◽  
Khamis Essa ◽  
Hany Hassanin

Entrapped double oxide film defects are known to be the most detrimental defects during the casting of aluminium alloys. In addition, hydrogen dissolved in the aluminium melt was suggested to pass into the defects to expand them and cause hydrogen porosity. In this work, the effect of two important casting parameters (the filtration and hydrogen content) on the properties of Al–7 Si–0.3 Mg alloy castings was studied using a full factorial design of experiments approach. Casting properties such as the Weibull modulus and position parameter of the elongation and the tensile strength were considered as response parameters. The results suggested that adopting 10 PPI filters in the gating system resulted in a considerable boost of the Weibull moduli of the tensile strength and elongation due to the enhanced mould filling conditions that minimised the possibility of oxide film entrainment. In addition, the results showed that reducing the hydrogen content in the castings samples from 0.257 to 0.132 cm3/100 g Al was associated with a noticeable decrease in the size of bifilm defects with a corresponding improvement in the mechanical properties. Such significant effect of the process parameters studied on the casting properties suggests that the more careful and quiescent mould filling practice and the lower the hydrogen level of the casting, the higher the quality and reliability of the castings produced.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiao-yan Ren ◽  
Xin Zhang ◽  
Xu Hong ◽  
Jiping REN

Abstract An investigation was carried out to assess the effect of the P content on the microstructure and mechanical properties of ZCuPb20Sn5 alloy. Alloys of various compositions, (0.05, 0.1, 0.2, 0.3, 0.5% wt.% P) were melted in a melting furnace under 1200 °C and cast into metal mould, the hardness, strength and elongation of alloy castings which adding P or not in melting process were tested and the casting mircostructure was analyzed. The results show that the second phase appeared and gradually increased in amount with the content of P elements increased. Also, the microstructure of ZCuPb20Sn5 alloy was refined, and the average size of lead inclusions was reduced and formed a dispersed network of eutectoid inclusions.The addition of P had a beneficial effect on the microstructure and properties of ZCuPb20Sn5 alloy. The hardness and tensile strength of ZCuPb20Sn5 alloy increased, but the elongation increased at first, then decreased, when the P content increased. When the P content was less than 0.1 wt.%, the functions of phosphorous copper mainly was used as a deoxidizing initial gas, but when exceeded 0.1 wt.%, a second phase reinforcing particle formed with copper or nickel together, which improved the mechanical properties of the alloy. However, the elongation was lowered due to the brittle phosphide phase.


2011 ◽  
Vol 675-677 ◽  
pp. 629-632
Author(s):  
Ai Hui Liu ◽  
Yan Wei Sui ◽  
Bang Sheng Li ◽  
Jing Jie Guo

In this work, the effects of centrifugal radius and mould rotation speed on the tensile strength, yield strength, specific elongation, and microhardness on Al-Cu alloy castings are investigated. The results show that, with increasing the centrifugal radius or mould rotation speed, the mechanical properties increase gradually. With increasing the centrifugal radius, the variation amplitude of mechanical properties of Al-Cu alloys at mould rotation speed 600rpm is greater than that at 300rpm. This is due to the finer microstructure and the strengthened grain boundary and then resulting in the increase of the resistance to dislocation slipping.


Sign in / Sign up

Export Citation Format

Share Document