Material Forming

2021 ◽  
pp. 55-76
Keyword(s):  
2018 ◽  
Vol 284 ◽  
pp. 513-518 ◽  
Author(s):  
Sergey A. Tipalin ◽  
Michael A. Petrov ◽  
N.F. Shpunkin

The accuracy of the simulation results of stamping processes of thin sheet material depends on the correct properties’ specification, namely stamping ability. Experiments have been carried out and the influence of the deformation speed on the hardening exponent during cold sheet metal forming was studied. It was found out, that strain changed 100 times can influence the strain grade of the hardening curve of about 10%. This regularity has been taken into consideration prior to the calculation in any CAE-software for material forming.


2021 ◽  
Vol 6 (15) ◽  
pp. 235-245
Author(s):  
Soner ÖZDEMİR

Light, which is the main source in which plastic arts produce meaning by processing it, indirectly takes place in all works of art with its different colors and tones throughout the history of art. With the use of new materials and techniques in art with the modern period, it is seen that the light itself, that is, the light source, is also included in art works as a medium. This situation allowed the artists to create brand new perceptions and effects. With the second half of the 20th century, the use of artificial light source in sculpture as an element belonging to the sculpture is encountered. Some of the artists selected as examples in this study were chosen in terms of being the first example in terms of the material they used, the way they used the light source and the diversity of the content they produced with these materials. Light, which is one of the primary conditions for perception in sculpture; In this study, the material forming the sculpture, such as transparency and reflection, is not based on its interaction with its structure, but as an element that forms a part or whole of the sculpture. It is aimed to show the effect of using artificial light source in sculpture on expression and perception through selected examples.


Author(s):  
E. Lugscheider ◽  
C. Herbst-Dederichs ◽  
A. Reimann

Abstract Quasicrystalline phases improve many alloy properties such as thermomechanical stability, thermal and electrical conductivity, and tribological performance. High hardness, however, is accompanied by brittleness, an undesired property in many applications. Reduced brittleness can be achieved by embedding quasicrystalline phases in a more ductile material, forming a metal-matrix composite that retains some quasicrystalline properties. This study evaluates thermally sprayed coatings made from different compositions of such composites. The coatings assessed were produced by arc-wire, HVOF, and atmospheric plasma spraying using various forms of feed material, including blended, agglomerated, chemical encased, and attrition-milled powders and filled wires. The investigation involved metallurgical analysis, proving the existence of quasicrystal content and assessing the matrix phase, and tests showing how sliding wear is influenced by the composition of quasicrystalline phases.


2002 ◽  
Vol 66 (4) ◽  
pp. 547-553 ◽  
Author(s):  
B. J. Williamson ◽  
J. J. Wilkinson ◽  
P. F. Luckham ◽  
C. J. Stanley

AbstractRecent experimental studies have suggested that colloidal silica can form in high-T (300 to >700°C) hydrothermal fluids (Wilkinson et al., 1996). Natural evidence in support of this was found by Williamson et al. (1997) who proposed a colloidal (gel) silica origin for <50 μm irregularly-shaped inclusions of quartz contained in greisen topaz from southwest England. Confocal and microprobe studies, presented here, strengthen this argument although rather than forming a gel in the hydrothermal fluid, it is suggested that the colloidal silica aggregated as a viscous coagulated colloid, with much of its volume (<10 to 30 vol.%) consisting of metal (mainly Fe) -rich particles. This is evident from the largely solid nature of metal-rich shrinkage bubbles contained at the margins of the inclusions of quartz which shows that the material forming the inclusions contained much less liquid than would be expected in a silica gel. These findings may have important implications for models of ore formation since the precipitation of a coagulated colloid could inhibit hydrothermal fluid transport and cause co-deposition of silica and entrained ore-forming elements. The mode of formation of the colloidal silica and further implications of the study are discussed.


2018 ◽  
Vol 385 ◽  
pp. 391-396
Author(s):  
Mei Ling Guo ◽  
Ming Jen Tan ◽  
Xu Song ◽  
Beng Wah Chua

Hybrid superplastic forming (SPF) is a novel sheet metal forming technique that combines hot drawing with gas forming process. Compared with the conventional SPF process, the thickness distribution of AZ31B part formed by this hybrid SPF method has been significantly improved. Additionally, the microstructure evolution of AZ31 was examined by electron backscatter diffraction (EBSD). Many subgrains with low misorientation angle were observed in the coarse grains during SPF. Based on the tensile test results, parameters of hyperbolic sine creep law model was determined at 400 oC. The hybrid SPF behavior of non-superplastic grade AZ31B was predicted by ABAQUS using this material forming model. The FEM results of thickness distribution, thinning characteristics and forming height were compared with the experimental results and have shown reasonable agreement with each other.


1986 ◽  
Vol 7 ◽  
pp. 89-92
Author(s):  
W. F. van Altena ◽  
T. Girard ◽  
C. E. López ◽  
A. R. Klemola ◽  
B. F. Jones ◽  
...  

The Lick Northern Proper Motion (NPM) and the Yale-San Juan Southern Proper Motion (SPM) programs have been described on several occasions (Wright 1950; Deutsch and Klemola 1974; Vasilevskis 1973; and Wesselink 1974). The two programs represent an attempt to measure the coordinates and proper motions, with respect to the extragalactic reference frames, for large numbers of stars representing most of the astrophysically-recognized classes. The photographic plate material forming the basis of the NPM program derives from the first (1947-1954) and second (1970-present) epoch phases for 1246 fields with the Lick 51 cm Carnegie double-astrograph for centers at -20° and northward (Shane and Wirtanen 1967). A southern supplement of 144 additional fields takes the program to -30°. The SPM consists of 632 fields with centers at -20° and southward. The first epoch plates were taken between 1965 and 1974 and a partial extension of 72 fields to more northerly declinations is essentially complete. One short and one long exposure permit the measurement of positions and approximate photometry for selected stars and reference galaxies over the blue magnitude range from about 8 to 17-18.


2018 ◽  
Vol 15 ◽  
pp. 1716-1721
Author(s):  
Jeong-Min Lee ◽  
Byung-Min Kim ◽  
Dae-Cheol Ko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document