Evaluation of Feature Selection Techniques in Intrusion Detection Systems Using Machine Learning Models in Wireless Ad Hoc Networks

2021 ◽  
pp. 33-72
Author(s):  
T.J. Nagalakshmi ◽  
M. Balasaraswathi ◽  
V. Sivasankaran ◽  
D. Ravikumar ◽  
S. Joseph Gladwin ◽  
...  
2021 ◽  
Vol 1 (2) ◽  
pp. 252-273
Author(s):  
Pavlos Papadopoulos ◽  
Oliver Thornewill von Essen ◽  
Nikolaos Pitropakis ◽  
Christos Chrysoulas ◽  
Alexios Mylonas ◽  
...  

As the internet continues to be populated with new devices and emerging technologies, the attack surface grows exponentially. Technology is shifting towards a profit-driven Internet of Things market where security is an afterthought. Traditional defending approaches are no longer sufficient to detect both known and unknown attacks to high accuracy. Machine learning intrusion detection systems have proven their success in identifying unknown attacks with high precision. Nevertheless, machine learning models are also vulnerable to attacks. Adversarial examples can be used to evaluate the robustness of a designed model before it is deployed. Further, using adversarial examples is critical to creating a robust model designed for an adversarial environment. Our work evaluates both traditional machine learning and deep learning models’ robustness using the Bot-IoT dataset. Our methodology included two main approaches. First, label poisoning, used to cause incorrect classification by the model. Second, the fast gradient sign method, used to evade detection measures. The experiments demonstrated that an attacker could manipulate or circumvent detection with significant probability.


2021 ◽  
Vol 11 (19) ◽  
pp. 9296
Author(s):  
Talha Mahboob Alam ◽  
Mubbashar Mushtaq ◽  
Kamran Shaukat ◽  
Ibrahim A. Hameed ◽  
Muhammad Umer Sarwar ◽  
...  

Lack of education is a major concern in underdeveloped countries because it leads to poor human and economic development. The level of education in public institutions varies across all regions around the globe. Current disparities in access to education worldwide are mostly due to systemic regional differences and the distribution of resources. Previous research focused on evaluating students’ academic performance, but less has been done to measure the performance of educational institutions. Key performance indicators for the evaluation of institutional performance differ from student performance indicators. There is a dire need to evaluate educational institutions’ performance based on their disparities and academic results on a large scale. This study proposes a model to measure institutional performance based on key performance indicators through data mining techniques. Various feature selection methods were used to extract the key performance indicators. Several machine learning models, namely, J48 decision tree, support vector machines, random forest, rotation forest, and artificial neural networks were employed to build an efficient model. The results of the study were based on different factors, i.e., the number of schools in a specific region, teachers, school locations, enrolment, and availability of necessary facilities that contribute to school performance. It was also observed that urban regions performed well compared to rural regions due to the improved availability of educational facilities and resources. The results showed that artificial neural networks outperformed other models and achieved an accuracy of 82.9% when the relief-F based feature selection method was used. This study will help support efforts in governance for performance monitoring, policy formulation, target-setting, evaluation, and reform to address the issues and challenges in education worldwide.


2011 ◽  
pp. 81-104 ◽  
Author(s):  
G. Camps-Valls ◽  
J. F. Guerrero-Martinez

In this chapter, we review the vast field of application of artificial neural networks in cardiac pathology discrimination based on electrocardiographic signals. We discuss advantages and drawbacks of neural and adaptive systems in cardiovascular medicine and catch a glimpse of forthcoming developments in machine learning models for the real clinical environment. Some problems are identified in the learning tasks of beat detection, feature selection/extraction, and classification, and some proposals and suggestions are given to alleviate the problems of interpretability, overfitting, and adaptation. These have become important problems in recent years and will surely constitute the basis of some investigations in the immediate future.


Sign in / Sign up

Export Citation Format

Share Document