Iron biomineral growth from the initial nucleation seed in L‐ferritin

Author(s):  
Silvia Ciambellotti ◽  
Cecilia Pozzi ◽  
Stefano Mangani ◽  
Paola Turano
Keyword(s):  
Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


2011 ◽  
Vol 49 (01) ◽  
pp. 58-63
Author(s):  
Hye-Young Yoon ◽  
Je-Hyun Lee ◽  
Hyeong-Min Jung ◽  
Seong-Moon Seo ◽  
Chang-Young Jo ◽  
...  

2011 ◽  
Vol 13 (45) ◽  
pp. 20136 ◽  
Author(s):  
Laia Vilà-Nadal ◽  
Scott G. Mitchell ◽  
Antonio Rodríguez-Fortea ◽  
Haralampos N. Miras ◽  
Leroy Cronin ◽  
...  
Keyword(s):  

1996 ◽  
Vol 441 ◽  
Author(s):  
W. K. Liu ◽  
X. M. Fang ◽  
P. J. McCann ◽  
M. B. Santos

AbstractRHEED intensity oscillations observed during MBE growth of CaF2 on Si(111) and PbSe on CaF2/Si(111) are presented. The effects of substrate temperature and initial nucleation procedure are investigated. Strong temporal oscillations of the specular beam intensity are found to be most readily observed at temperatures below 200°C for both CaF2 and PbSe. Growth rates measured as a function of cell temperatures exhibit Arrhenius behavior with activation energies of 5.0 eV and 1.93 eV for CaF2 and PbSe, respectively. The relatively high activation energy obtained for CaF2 is consistent with the high melting point and sublimation energy of ionic fluorides.


2002 ◽  
Vol 739 ◽  
Author(s):  
Meg Abraham ◽  
Inmaculada Gomez-Morilla ◽  
Mike Marsh ◽  
Geoff Grime

ABSTRACTThe use of photons to create intricate three-dimensional and buried structures [1] in photo-structurable glass has been well demonstrated at several institutions [2]. In these instances the glass used whether it be Foturan™, made by the Schott Group or a similar product made by Corning Glass, forms a silver nucleation sites on exposure to intense UV laser light via a two-photon process. Subsequent annealing causes a localized crystal growth to form a meta-silicate phase which can be etched in dilute hydrofluoric acid at rates of 20 to 50 times that of the unprocessed glass. The same formulation of glass can be “exposed” using a particle beam to create the nucleation site. In the case of particle beam exposure, experiments have shown that the mechanisms that cause this initial nucleation and eventual stochiometric transformation, after annealing, depend largely on the beam energy.


1997 ◽  
Vol 481 ◽  
Author(s):  
Celeste Sagui ◽  
Dean Stinson O'Gorman ◽  
Martin Grant

ABSTRACTIn this work we have re-examined the classical problem of nucleation and growth. A new model considers the correlations among droplets and naturally incorporates the crossover from the early-stage, nucleation dominated regime to the scaling, late-stage, coarsening regime within a single framework.


2014 ◽  
Vol 104 (6) ◽  
pp. 063703 ◽  
Author(s):  
David S. Li ◽  
Oliver D. Kripfgans ◽  
Mario L. Fabiilli ◽  
J. Brian Fowlkes ◽  
Joseph L. Bull

2021 ◽  
Author(s):  
Kevin H.-C. Wei ◽  
Carolus Chan ◽  
Doris Bachtrog

Heterochromatin is a key architectural feature of eukaryotic genomes, crucial for silencing of repetitive elements and maintaining genome stability. Heterochromatin shows stereotypical enrichment patterns around centromeres and repetitive sequences, but the molecular details of how heterochromatin is established during embryogenesis are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of D. miranda at precisely staged developmental time points. We find that canonical H3K9me3 enrichment patterns are established early on before cellularization, and mature into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage3 (nuclear cycle 9) over transposable elements (TE) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of TE families and often appear over promoter regions, while late nucleation develops broadly across most TEs. Early nucleating TEs are highly targeted by maternal piRNAs and show early zygotic transcription, consistent with a model of co-transcriptional silencing of TEs by small RNAs. Interestingly, truncated TE insertions lacking nucleation sites show significantly reduced enrichment across development, suggesting that the underlying sequences play an important role in recruiting histone methyltransferases for heterochromatin establishment.


Sign in / Sign up

Export Citation Format

Share Document