scholarly journals Stellar evolution of massive stars at very low metallicities

2008 ◽  
pp. 101-126 ◽  
Author(s):  
R. Hirschi ◽  
C. Frhlich ◽  
M. Liebendrfer ◽  
F.-K. Thielemann
2010 ◽  
Vol 6 (S272) ◽  
pp. 233-241
Author(s):  
Christopher J. Evans

AbstractOne of the challenges for stellar astrophysics is to reach the point at which we can undertake reliable spectral synthesis of unresolved populations in young, star-forming galaxies at high redshift. Here I summarise recent studies of massive stars in the Galaxy and Magellanic Clouds, which span a range of metallicities commensurate with those in high-redshift systems, thus providing an excellent laboratory in which to study the role of environment on stellar evolution. I also give an overview of observations of luminous supergiants in external galaxies out to a remarkable 6.7 Mpc, in which we can exploit our understanding of stellar evolution to study the chemistry and dynamics of the host systems.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 201-206 ◽  
Author(s):  
K. De ◽  
M. M. Kasliwal ◽  
E. O. Ofek ◽  
T. J. Moriya ◽  
J. Burke ◽  
...  

Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.


2015 ◽  
Vol 12 (S316) ◽  
pp. 294-301
Author(s):  
Richard Wünsch ◽  
Jan Palouš ◽  
Guillermo Tenorio-Tagle ◽  
Casiana Muñoz-Tuñón ◽  
Soňa Ehlerová

AbstractMassive stars in young massive clusters insert tremendous amounts of mass and energy into their surroundings in the form of stellar winds and supernova ejecta. Mutual shock-shock collisions lead to formation of hot gas, filling the volume of the cluster. The pressure of this gas then drives a powerful cluster wind. However, it has been shown that if the cluster is massive and dense enough, it can evolve in the so–called bimodal regime, in which the hot gas inside the cluster becomes thermally unstable and forms dense clumps which are trapped inside the cluster by its gravity. We will review works on the bimodal regime and discuss the implications for the formation of subsequent stellar generations. The mass accumulates inside the cluster and as soon as a high enough column density is reached, the interior of the clumps becomes self-shielded against the ionising radiation of stars and the clumps collapse and form new stars. The second stellar generation will be enriched by products of stellar evolution from the first generation, and will be concentrated near the cluster center.


Author(s):  
John J Eldridge

The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.


2019 ◽  
Vol 624 ◽  
pp. A137 ◽  
Author(s):  
L. Haemmerlé ◽  
P. Eggenberger ◽  
S. Ekström ◽  
C. Georgy ◽  
G. Meynet ◽  
...  

Grids of stellar models are useful tools to derive the properties of stellar clusters, in particular young clusters hosting massive stars, and to provide information on the star formation process in various mass ranges. Because of their short evolutionary timescale, massive stars end their life while their low-mass siblings are still on the pre-main sequence (pre-MS) phase. Thus the study of young clusters requires consistent consideration of all the phases of stellar evolution. But despite the large number of grids that are available in the literature, a grid accounting for the evolution from the pre-MS accretion phase to the post-MS phase in the whole stellar mass range is still lacking. We build a grid of stellar models at solar metallicity with masses from 0.8 M⊙ to 120 M⊙, including pre-MS phase with accretion. We use the GENEC code to run stellar models on this mass range. The accretion law is chosen to match the observations of pre-MS objects on the Hertzsprung-Russell diagram. We describe the evolutionary tracks and isochrones of our models. The grid is connected to previous MS and post-MS grids computed with the same numerical method and physical assumptions, which provides the widest grid in mass and age to date.


2019 ◽  
Vol 627 ◽  
pp. A151 ◽  
Author(s):  
T. Shenar ◽  
D. P. Sablowski ◽  
R. Hainich ◽  
H. Todt ◽  
A. F. J. Moffat ◽  
...  

Context. Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z ≈ 0.5 Z⊙), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf–Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45  ±  30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only ≈12  ±  7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises ≈4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L ≈ 5.2 [L⊙], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (veq ≲ 250 km s−1) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.


2014 ◽  
Vol 9 (S307) ◽  
pp. 88-89 ◽  
Author(s):  
Ronny Blomme ◽  
Yves Frémat ◽  
Eric Gosset ◽  
Artemio Herrero ◽  
Alex Lobel ◽  
...  

AbstractAs part of the Gaia-ESO Survey (GES), a number of clusters will be observed that were chosen specifically for their massive-star content. We report on the procedures we followed to determine the stellar parameters from the massive-star spectra of this survey. We intercompare the results from the different techniques used by the nodes of our group to determine these parameters and discuss some of the problems encountered. We present preliminary results for NGC 6705, NGC 3293, and Trumpler 14. We study microturbulence in A-type stars, we use the repeat observation to investigate binarity, and we determine cluster membership from the radial velocity information. The large number of massive-star spectra obtained by the Gaia-ESO Survey will allow us to critically test stellar evolution modelling.


2020 ◽  
Vol 494 (2) ◽  
pp. 2236-2243 ◽  
Author(s):  
Tyrone E Woods ◽  
Alexander Heger ◽  
Lionel Haemmerlé

ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.


1985 ◽  
Vol 19 (1) ◽  
pp. 479-502
Author(s):  
A. N. Cox ◽  
D. Sugimoto ◽  
P. H. Bodenheimer ◽  
C. S. Chiosi ◽  
D. J. Faulkner ◽  
...  

This report of Commission 35, as in past reports, consists of some details of only a few selected topics. This is necessary because a survey of the entire field of stellar formation, structure, stability, evolution, pulsation, and explosions for the three year period from mid-1981 to mid-1984 would be excessively long. Our topics here, in order from the most massive stellar classes to the least are: Massive Stars (R.M. Humphreys), Rotation in Late Type Stars (W. Benz), Helioseismology (J. Christensen-Dalsgaard), Planetary Nebula Central Stars (E.M. Sion), Pulsations in Hot Degenerate Dwarf Stars (A.N. Cox and S.D. Kawaler), and White Dwarfs (V. Weidemann). There is some overlap in the reviewing of these last three reports because the topics are very closely related. Concentration in this dying stage of stellar evolution seems appropriate because of the great current interest in these matters.


2016 ◽  
Vol 12 (S329) ◽  
pp. 455-464

I am reporting on our team's progress in investigating fundamental properties of convective shells in the deep stellar interior during advanced stages of stellar evolution. We have performed a series of 3D hydrodynamic simulations of convection in conditions similar to those in the O-shell burning phase of massive stars. We focus on characterizing the convective boundary and the mixing of material across this boundary. Results from 7683 and 15363 grids are encouragingly similar (typically within 20%). Several global quantities, including the rate of mass entrainment at the convective boundary and the driving luminosity, are related by scaling laws. We investigate the effect of several of our assumptions, including the treatment of the nuclear burning driving the convection or that of neutrino cooling. The burning of the entrained material from above the convection zone could have important implications for pre-supernova nucleosynthesis.


Sign in / Sign up

Export Citation Format

Share Document