Effect of Micro‐Dry‐Leaves Filler and Al‐SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites

Author(s):  
Mohit Hemath ◽  
Govindrajulu Hemath Kumar ◽  
Varadhappan Arul Mozhi Selvan ◽  
Mavinkere R. Sanjay ◽  
Suchart Siengchin
Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 724 ◽  
Author(s):  
Danuta Matykiewicz

The goal of this work was to investigate the effect of the biochar additive (2.5; 5; 10 wt.%) on the properties of carbon fiber-reinforced bio-epoxy composites. The morphology of the composites was monitored by scanning electron microscopy (SEM), and the thermomechanical properties by dynamic mechanical thermal analysis (DMTA). Additionally, mechanical properties such as impact strength, flexural strength andtensile strength, as well as the thermal stability and degradation kinetics of these composites were evaluated. It was found that the introduction of biochar into the epoxy matrix improved the mechanical and thermal properties of carbon fiber-reinforced composites.


2015 ◽  
Vol 35 (8) ◽  
pp. 805-811 ◽  
Author(s):  
Danuta Matykiewicz ◽  
Mateusz Barczewski ◽  
Tomasz Sterzyński

Abstract The aim of this study was to produce epoxy composites highly filled with waste bulk molding compounds (BMC). The used amount of filler ranged from 30 wt% to 60 wt%. The influence of BMC on the epoxy resin curing process was monitored with the differential scanning calorimetry (DSC) method. Fourier transform infrared (FTIR) spectroscopy was used to evaluate the chemical structure of composites. The mechanical and thermal properties were examined by means of dynamic mechanical thermal analysis (DMTA), the Charpy method and the Shore D test. The fracture surface morphology of composites was observed with scanning electron microscopy (SEM). The storage modulus G′ of the epoxy composites with BMC was higher than the reference epoxy sample and significantly dependent on filler content. All investigated materials showed similar values of hardness, but at the same time low values of impact strength. Therefore, obtained composites can be used as low cost coating materials.


2015 ◽  
Vol 815 ◽  
pp. 67-71
Author(s):  
Gang Li ◽  
Peng Li Zhu ◽  
Tao Zhao ◽  
Rong Sun ◽  
Daniel Lu

In the present study, epoxy based composite filled with meso and non-porous silica microspheres with similar size were prepared respectively and their rheological and thermo-mechanical properties were studied systematically. The results showed that the mesoporous silica/epoxy composites showed much higher viscosity, storage modulus and glass transition temperature (Tg) while lower coefficient of thermal expansion (CTE) than did epoxy composites with nonporous silica particles, which could be attributed to the stronger interface interaction between the mesoporous silica filler with larger specific surface area (BET) and the epoxy matrix.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3611
Author(s):  
Danuta Matykiewicz ◽  
Kamila Sałasińska ◽  
Mateusz Barczewski

The aim of the article was to determine the effect of the poly(vinyl chloride) additive (PVC) on the thermomechanical and fire properties of epoxy composites reinforced with basalt fabric. Ten-layered composites with 2.5, 5 and 10 wt.% of PVC powder were fabricated using hand lay-up. The following features were evaluated for composites: structure (by scanning electron microscopy, SEM), thermomechanical properties (by dynamical thermomechanical analysis, DMTA), mechanical properties (in bending, tensile and interlaminar shear strength tests), hardness (using the Barcol method), thermal stability (by thermogravimetry, TGA) and fire behavior (using a cone calorimeter). It was found that the introduction of micron PVC powder into the epoxy matrix improved the thermomechanical properties of composites, such as storage module, and mechanical properties, such as flexural strength and modulus, as well as hardness.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1802 ◽  
Author(s):  
Danuta Matykiewicz

Fiber-reinforced epoxy composites are used in various branches of industry because of their favorable strength and thermal properties, resistance to chemical and atmospheric conditions, as well as low specific gravity. This review discusses the mechanical and thermomechanical properties of hybrid epoxy composites that were reinforced with glass, carbon, and basalt fabric modified with powder filler. The modification of the epoxy matrix mainly leads to an improvement in its adhesion to the layers of reinforcing fibers in the form of laminate fabrics. Some commonly used epoxy matrix modifiers in powder form include carbon nanotubes, graphene, nanoclay, silica, and natural fillers. Fiber fabric reinforcement can be unidirectional, multidirectional, biaxial, or have plain, twill, and satin weave, etc. Commonly used methods of laminating epoxy composites are hand lay-up process, resin transfer molding, vacuum-assisted resin transfer molding, and hot or cold pressing. The following review is a valuable source of information on multiscale epoxy composites due to the multitude of technological and material solutions.


Sign in / Sign up

Export Citation Format

Share Document