Inorganic Material‐Based Nanocarriers for Delivery of Biomolecules

2021 ◽  
pp. 245-293
Author(s):  
Zahra Shariatinia
Keyword(s):  
Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


2019 ◽  
Vol 26 (12) ◽  
pp. 2147-2165 ◽  
Author(s):  
Luana Perioli ◽  
Cinzia Pagano ◽  
Maria Rachele Ceccarini

: In recent years inorganic materials are largely present in products intended for health care. Literature gives many examples of inorganic materials used in many healthcare products, mainly in pharmaceutical field. : Silver, zinc oxide, titanium oxide, iron oxide, gold, mesoporous silica, hydrotalcite-like compound and nanoclays are the most common inorganic materials used in nanosized form for different applications in the health field. Generally, these materials are employed to realize formulations for systemic use, often with the aim to perform a specific targeting to the pathological site. The nanometric dimensions are often preferred to obtain the cellular internalization when the target is localized in the intracellular space. : Some materials are frequently used in topical formulations as rheological agents, adsorbents, mattifying agents, physical sunscreen (e.g. zinc oxide, titanium dioxide), and others. : Recent studies highlighted that the use of nanosized inorganic materials can represent a risk for health. The very small dimension (nanometric) until a few years ago represented a fundamental requirement; however, it is currently held responsible for the inorganic material toxicity. This aspect is very important to be considered as actually numerous inorganic materials can be found in many products available in the market, often dedicated to infants and children. These materials are used without taking into account their dimensional properties with increased risk for the user/patient. : This review deals with a deep analysis of current researches documenting the toxicity of nanometric inorganic materials especially those largely used in products available in the market.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1291 ◽  
Author(s):  
Isobel Tibbetts ◽  
George Kostakis

Metal-organic frameworks (MOFs) have found uses in adsorption, catalysis, gas storage and other industrial applications. Metal Biomolecule Frameworks (bioMOFs) represent an overlap between inorganic, material and medicinal sciences, utilising the porous frameworks for biologically relevant purposes. This review details advances in bioMOFs, looking at the synthesis, properties and applications of both bioinspired materials and MOFs used for bioapplications, such as drug delivery, imaging and catalysis, with a focus on examples from the last five years.


2012 ◽  
Vol 44 (1-3) ◽  
pp. 1-6 ◽  
Author(s):  
Wei Ma ◽  
Qiang Wang ◽  
Ren Wang ◽  
Lu Wang
Keyword(s):  

2011 ◽  
Vol 332-334 ◽  
pp. 1937-1940 ◽  
Author(s):  
Wei Wei Hu ◽  
Hua Wu Liu ◽  
Dang Feng Zhao ◽  
Zong Bin Yang

Basalt fiber is a novel high-performance inorganic material, recently has been well received as a reinforcement in China. However, the applications in civil engineering have been rather limited. The chemical compositions, the characteristics of basalt fibers, and the typical products of basalt, including chopped yarn of basalt fiber, basalt fiber geo-textiles and basalt fiber reinforced polymer, were introduced.The advantages of basalt fibers as a reinforcement of concrete were explored in comparison with the commonly used reinforcing fibers, which indicates that basalt fiber is the most promising reinforcement material for concrete and will significantly benefit civil construction industries in the future.


2003 ◽  
Vol 254 (2) ◽  
pp. 345-363 ◽  
Author(s):  
Jean-Mario Nhut ◽  
Laurie Pesant ◽  
Jean-Philippe Tessonnier ◽  
Gauthier Winé ◽  
Jean Guille ◽  
...  

2006 ◽  
Vol 985 ◽  
Author(s):  
Albert Aloy ◽  
Alexander Strelnikov ◽  
Vyacheslav Essimantovskiy

AbstractSeparated liquid highâlevel radioactive waste (HLW) fractions, in particular, about 100 l of 137Cs strip product with activity up to ∼ 100 Ci/l (3.7 TBq/l) have been produced during the development and testing of partitioning technology and temporary stored at “V.G. Khlopin Radium Institute” (SaintâPetersburg, Russia). The benchâscale experimental unit designed for operation in the hot cell was developed for 137Cs strip product solidification with using of alumina silicate porous inorganic material (PIM) called Gubka.Conditions of saturation, drying and calcinations of the salts into Gubka pores were optimized and the operations under remote control regime were executed during tests with using of simulated strip product doped with 137Cs. The volume reduction coefficients were equal by a factor of 3.2â3.9 and 137Cs discharge into offâgas system was not detected. 137Cs leach rates from Gubka blocks after calcination at 800 °C were 1.0â1.5*10-3 g/m2*day.


ChemInform ◽  
2010 ◽  
Vol 24 (46) ◽  
pp. no-no
Author(s):  
A. A. KAMINSKII ◽  
S. N. BAGAEV ◽  
A. V. BUTASHIN ◽  
B. V. MILL'
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document