scholarly journals Effect of Filter Functional Coating on Detrimental Nonmetallic Inclusions in 42CrMo4 Steel and Its Resulting Mechanical Properties

2019 ◽  
Vol 22 (2) ◽  
pp. 1900540
Author(s):  
Mikhail Seleznev ◽  
Sebastian Henschel ◽  
Enrico Storti ◽  
Christos G. Aneziris ◽  
Lutz Krüger ◽  
...  
Author(s):  
A. Çalık ◽  
O. Dokuzlar ◽  
N. Uçar

Purpose: In this study, the effect of heat treatment on the microstructure and mechanical properties of 42CrMo4 steel were investigated. Design/methodology/approach: The samples were annealed at 860°C for 120 min. followed by oil quenching and then tempered at temperatures between 480 and 570°C for 120 min. The microstructure of untreated 42CrMo4 steel mainly consists of pearlite and ferrite whereas the microstructure was found to be as a martensitic structure with a quenching process. Findings: The results showed that there is an increase in yield stress, ultimate tensile stress, hardness and impact energy, while elongation decreases at the end of the quenching process. Conversely, yield stress, ultimate tensile stress and hardness decrease slightly with the increasing of tempering temperature, while elongation and impact energy increase. Research limitations/implications: Other types of steels can be heat treated in a wider temperature range and the results can be compared. Practical implications: It is a highly effective method for improving the mechanical properties of heat treatment materials. Originality/value: A relationship between the mechanical properties and the microstructure of materials can be developed. The heat treatment is an effective method for this process.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6671
Author(s):  
Seungcheol Yoo ◽  
Changyeon Lee ◽  
Seokwon Lee ◽  
Chulsoo Kim ◽  
Wonseok Choi ◽  
...  

In this study, the characteristics of functional films were investigated according to the number of coatings and their heat treatment times. The functional coating films were deposited on glass substrates made of the same material as the cover glass of photovoltaic (PV) modules. Each film was coated once by brushing with a special silica-based solution, and each heat treatment was done using a hot-air fan for 2 min at 300 °C. The substrates were coated once, twice, and thrice, respectively, and were annealed once, twice, and thrice by drying and cooling alternately. The specimens were then analyzed for their anti-pollution properties, contact angles, light transmittance, and mechanical properties. The anti-pollution function was confirmed through a self-cleaning test, while the contact angle and light transmittance were examined using special equipment. Mechanical properties, including hardness and adhesion, were confirmed using the standard hardness testing method (ASTM D3363) such as those using an H-9H, F, HB, or B-6B pencil (Mitsubishi, Japan) and a standard adhesion testing method (ASTM D3359). It was confirmed that the film coated once yielded a very low contact angle of 8.9° and very good anti-pollution properties. Its adhesion and strength also showed high values of 5B and 9H, respectively.


2012 ◽  
Vol 730-732 ◽  
pp. 757-762
Author(s):  
Luís G. Reis ◽  
Vitor Anes ◽  
Bin Li ◽  
Manuel de Freitas

The unexpected collapse of engineering structures is often caused by the fatigue phenomenon resulting from degradation of mechanical properties of materials due to multiaxial cyclic loadings. The interpretation of such degradation is a topic of intensive research in multiaxial fatigue. The fatigue strength is commonly evaluated by the equivalent stress based on the shear stress in the octahedral plane. However, the use of this kind of equivalent stress in the multiaxial fatigue criteria has been proven to be inappropriate. The degradation of mechanical properties of materials is dependent on several factors, e.g. the loading path has a strong influence on the fatigue strength. Non-proportional loadings cause higher damage in materials than proportional loadings for the same maximum equivalent stress. The purpose of this work is to study the effect of different multiaxial loadings on the 42CrMo4 steel and to improve the understanding about the relation between the fatigue strength and the sequential loading proportionality. The considered loadings were defined with the same history but with different load sequences and equivalent stress. To implement this work a biaxial servo-hydraulic fatigue machine was used. The fatigue life and crack angle were measured for each specimen. An analysis was made in order to correlate the crack initiation and fatigue life with the theoretical models, some remarks regarding these topics are presented.


1963 ◽  
Vol 5 (8) ◽  
pp. 432-439
Author(s):  
Yu. V. Kryakovskii ◽  
Yu. I. Rybenchik ◽  
E. I. Tyurin ◽  
V. I. Yavoiskii

2019 ◽  
Vol 946 ◽  
pp. 374-379 ◽  
Author(s):  
Anatoly A. Babenko ◽  
Vladimir I. Zhuchkov ◽  
Natalia I. Selmenskih

Effects of boron in low-carbon tube steel grade 17G1SU on nonmetallic inclusions, structure and mechanical properties were investigated. Experimental samples of rolled metal containing boron 0.006 and 0.011% are characterized by predominantly small, nonmetallic inclusions not more than 5 μm, which are represented by complex alumomagnesium spinels in the shell of manganese and calcium sulfides, and small silicate inclusions. Nonmetallic inclusions of comparative pipe steel sample, containing no boron characterized by the presence of larger inclusions presented complex oxysulfide and sulfide films. The main structural component of the comparative and experimental samples is ferrite. The introduction of boron is contributed by a decrease in the average size of ferritic grains from 8.7 μm (0% B) to 6.2 (0.006% B). Increasing the boron content to 0.011% leads to slight increase (up to 6.8 microns) of the size. The mechanical properties of 10 μm rolled metal pipe steel ensured the production of rolled products of strength class X80 without additional (thermal) treatment, as a result of the reduction in the size and shape of nonmetallic inclusions, and formation of dispersed structure.


Sign in / Sign up

Export Citation Format

Share Document