Co‐Constructing Interfaces of Multiheterostructure on MXene (Ti 3 C 2 T x )‐Modified 3D Self‐Supporting Electrode for Ultraefficient Electrocatalytic HER in Alkaline Media

2021 ◽  
pp. 2102576
Author(s):  
Zepeng Lv ◽  
Wansen Ma ◽  
Meng Wang ◽  
Jie Dang ◽  
Kailiang Jian ◽  
...  
TAPPI Journal ◽  
2015 ◽  
Vol 14 (11) ◽  
pp. 689-694
Author(s):  
QINGZHI MA ◽  
QI WANG ◽  
CHU WANG ◽  
NIANJIE FENG ◽  
HUAMIN ZHAI

The effect of oxygen (O2)-delignified pine kraft pulp pretreatment by high-purity, thermostable, and alkaline-tolerant xylanases on elemental chlorine free (ECF) bleaching of O2-delignification kraft pulp was studied. The study found that xylanase pretreatment preserved the intrinsic viscosity and yield of O2-delignified pulp while causing about 7% of delignification with high delignification selectivity. The xylanases with high purity, higher thermostability (75°C~80°C) in highly alkaline media (pH 8.0~9.5) could be applied on an industrial scale. Pulp pretreatment by the high-purity, thermostable, and alkaline tolerant xylanases could improve pulp brightness or reduce the chlorine dioxide (ClO2) consumption. In a D0ED1D2 bleaching sequence using the same amount of ClO2, the xylanase-pretreated pulp obtained a higher brightness (88.2% vs. 89.7% ISO) at the enzyme dose of 2 U/g pulp; or for the same brightness as control (88.2% ISO), the ClO2 dosage in the D0 stage was reduced by 27%, which represents a 16% savings in total ClO2 used for bleaching.


MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


Alloy Digest ◽  
1996 ◽  
Vol 45 (3) ◽  

Abstract VDM LC-Nickel 99.2 is unalloyed nickel which offers excellent corrosion resistance in many alkaline media. The metal also has good mechanical, magnetic, and magnetostrictive properties. It has a reduced carbon content to avoid graphitization at temperatures above 570 deg F (300 deg C). This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-502. Producer or source: VDM Technologies Corporation.


1982 ◽  
Vol 47 (10) ◽  
pp. 2676-2691 ◽  
Author(s):  
Miroslav Macka ◽  
Vlastimil Kubáň

The optical and acid-base characteristics of BrPADAP and ClPADAP were studied in mixed water-ethanol and water-DMF media and in 10% ethanol medium in the presence of cationic, anionic and nonionic tensides. The composition, optical characteristics, molar absorption coefficients and equilibrium constants of the ML and ML2 complexes with zinc(II) ions were found by graphical analysis and numerical interpretation of the absorbance curves by the modified SQUAD-G program. Optimal conditions were found for the spectrophotometric determination of Zn(II) in the presence of 0.1% Triton X-100 or 1% Brij 35 in alkaline media with pH = 6.5-10. BrPADAP and ClPADAP are the most sensitive reagents (ε = 1.3-1.6 . 105 mmol-1 cm2 at 557 and 560 nm, respectively) for the determination of zinc with high colour contrast of the reaction (Δλ = 104 nm) and selectivity similar to that for the other N-heterocyclic azodyes (PAN, PAR, etc.).


1986 ◽  
Vol 51 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
M. Martín Herrera ◽  
J. J. Maraver Puig ◽  
F. Sánchez Burgos

A study is made on the kinetic salt effect on the reaction of hydrolysis of several charged esters in alkaline media. The results are interpreted on the basis of the coulombic interaction, the salting in of hydroxide ion and a third component depending on size of the substrate.


1992 ◽  
Vol 57 (12) ◽  
pp. 2529-2538 ◽  
Author(s):  
Krasimir Ivanov ◽  
Penka Litcheva ◽  
Dimitar Klissurski

Mn-Mo-O catalysts with a different Mo/Mn ratio have been prepared by precipitation. The precipitate composition as a function of solution concentration and pH was studied by X-ray, IR, thermal and chemical methods. Formation of manganese molybdates with MnMoO4.1.5H2O, Mn3Mo3O12.2.5H2O, and Mn3Mo4O15.4H2O composition has been supposed. It is concluded that pure MnMoO4 may be obtained in both acid and alkaline media, the pH values depending on the concentration of the initial solutions. The maximum Mo/Mn ratio in the precipitates is 1.33. The formation of pure Mn3Mo4O15.4H2O is possible in weakly acidic media. This process is favoured by increasing the concentration of initial solutions.


1994 ◽  
Vol 59 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
Ladislav Svoboda ◽  
Petr Vořechovský

The properties of cellulose chelating ion exchangers Ostsorb have been studied in the sorption of cadmium and lead from aqueous solutions. The Cd(II) and Pb(II) ions are trapped by the Ostsorb OXIN and Ostsorb DETA ion exchangers most effectively in neutral and alkaline media but at these conditions formation of stable hydrolytic products of both metals competes with the exchange equilibria. From this point of view, Ostsorb DTTA appears to be a more suitable sorbent since it traps the Pb(II) and Cd(II) ions in acidic media already. Chloride ions interfere with the sorption of the two metals by Ostsorb DTTA whereas the ionic strength adjusted by the addition of sodium perchlorate does not affect the exchange capacity of this ion exchanger.


2019 ◽  
Vol 17 (1) ◽  
pp. 544-556
Author(s):  
Yoke-Leng Sim ◽  
Beljit Kaur

AbstractPhosphate ester hydrolysis is essential in signal transduction, energy storage and production, information storage and DNA repair. In this investigation, hydrolysis of adenosine monophosphate disodium salt (AMPNa2) was carried out in acidic, neutral and alkaline conditions of pH ranging between 0.30-12.71 at 60°C. The reaction was monitored spectrophotometrically. The rate ranged between (1.20 ± 0.10) × 10-7 s-1 to (4.44 ± 0.05) × 10-6 s-1 at [NaOH] from 0.0008 M to 1.00M recorded a second-order base-catalyzed rate constant, kOH as 4.32 × 10-6 M-1 s-1. In acidic conditions, the rate ranged between (1.32 ± 0.06) × 10-7 s-1 to (1.67 ± 0.10) × 10-6 s-1 at [HCl] from 0.01 M to 1.00 M. Second-order acid-catalyzed rate constant, kH obtained was 1.62 × 10-6 M-1 s-1. Rate of reaction for neutral region, k0 was obtained from graphical method to be 10-7 s-1. Mechanisms were proposed to involve P-O bond cleavage in basic medium while competition between P-O bond and N-glycosidic cleavage was observed in acidic medium. In conclusion, this study has provided comprehensive information on the kinetic parameters and mechanism of cleavage of AMPNa2 which mimicked natural AMP cleavage and the action of enzymes that facilitate its cleavage.


Sign in / Sign up

Export Citation Format

Share Document