Near‐Infrared Light Responsive TiO 2 for Efficient Solar Energy Utilization

2021 ◽  
pp. 2108977
Author(s):  
Longbo Jiang ◽  
Shaoyu Zhou ◽  
Jinjuan Yang ◽  
Hou Wang ◽  
Hanbo Yu ◽  
...  
2020 ◽  
Vol 59 (11) ◽  
pp. 110906
Author(s):  
Juan Shen ◽  
Yong Ren ◽  
Xinxin Zhu ◽  
Min Mao ◽  
Quan Zhou ◽  
...  

Author(s):  
Xiaowei Luan ◽  
Yongchun Pan ◽  
Yanfeng Gao ◽  
Yujun Song

Light has witnessed the history of mankind and even the universe. It is of great significances to the life of human society, contributing to energy, agriculture, communication, and much more....


Author(s):  
Cheng Tian ◽  
Chengcheng Li ◽  
Delun Chen ◽  
Yifan Li ◽  
LEI XING ◽  
...  

Designing low-cost and efficient evaporation system to maximize solar energy utilization is of great importance for the emerging solar water purification technologies. Herein, we demonstrate a universal sandwich hydrogel by...


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Atanu Naskar ◽  
Sohee Lee ◽  
Kwang-sun Kim

Antibiotic therapy is the gold standard for bacterial infections treatment. However, the rapid increase in multidrug-resistant (MDR) bacterial infections and its recent use for secondary bacterial infections in many COVID-19 patients has considerably weakened its treatment efficacy. These shortcomings motivated researchers to develop new antibacterial materials, such as nanoparticle-based antibacterial platform with the ability to increase the chances of killing MDR strains and prevent their drug resistance. Herein, we report a new black phosphorus (BP)-based non-damaging near-infrared light-responsive platform conjugated with ZnO and Au nanoparticles as a synergistic antibacterial agent against Staphylococcus aureus species. First, BP nanosheets containing Au nanoparticles were assembled in situ with the ZnO nanoparticles prepared by a low-temperature solution synthesis method. Subsequently, the antibacterial activities of the resulting Au–ZnO–BP nanocomposite against the non-resistant, methicillin-resistant, and erythromycin-resistant S. aureus species were determined, after its photothermal efficacy was assessed. The synthesized nanocomposite exhibited excellent anti-S. aureus activity and good photothermal characteristics. The non-resistant S. aureus species did not produce drug-resistant bacteria after the treatment of multiple consecutive passages under the pressure of the proposed nanoantibiotic, but rapidly developed resistance to erythromycin. This work clearly demonstrates the excellent photothermal antibacterial properties of Au–ZnO–BP nanocomposite against the MDR S. aureus species.


2021 ◽  
Vol 54 (4) ◽  
pp. 1934-1942
Author(s):  
Yuki Kawano ◽  
Yoshinori Ito ◽  
Shunichiro Ito ◽  
Kazuo Tanaka ◽  
Yoshiki Chujo

Sign in / Sign up

Export Citation Format

Share Document