Rational Design of Multifunctional Hetero-Hexameric Proteins for Hydrogel Formation and Controlled Delivery of Bioactive Molecules

2014 ◽  
Vol 3 (11) ◽  
pp. 1804-1811 ◽  
Author(s):  
Xiaoli Zhang ◽  
Hao Zhou ◽  
Ying Xie ◽  
Chunhua Ren ◽  
Dan Ding ◽  
...  
2020 ◽  
Vol 22 (1) ◽  
pp. 123-135 ◽  
Author(s):  
Yalda Khazaei-poul ◽  
Shohreh Farhadi ◽  
Sepideh Ghani ◽  
Safar Ali Ahmadizad ◽  
Javad Ranjbari

: Peptides are considered to be appropriate tools in various biological fields. They can be primarily used for the rational design of bioactive molecules. They can act as ligands in the development of targeted therapeutics as well as diagnostics, can be used in the design of vaccines or can be employed in agriculture. Peptides can be classified in two broad structural classes: linear and cyclic peptides. Monocyclic peptides are a class of polypeptides with one macrocyclic ring that bears advantages, such as more selective binding and uptake by the target receptor, as well as higher potency and stability compared to linear types. This paper provides an overview of the categories, synthesis methods and various applications of cyclic peptides. The various applications of cyclic peptides include their use as pro-apoptotic and anti-microbial agents, their application as targeting ligands in drug delivery and diagnostic agents, as well as agricultural and therapeutics applications that are elaborated and discussed in this paper.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1337
Author(s):  
Simona Oancea

Anthocyanins are colored valuable biocompounds, of which extraction increases globally, although functional applications are restrained by their limited environmental stability. Temperature is a critical parameter of food industrial processing that impacts on the food matrix, particularly affecting heat-sensitive compounds such as anthocyanins. Due to the notable scientific progress in the field of thermal stability of anthocyanins, an analytical and synthetic integration of published data is required. This review focuses on the molecular mechanisms and the kinetic parameters of anthocyanin degradation during heating, both in extracts and real food matrices. Several kinetic models (Arrhenius, Eyring, Ball) of anthocyanin degradation were studied. Crude extracts deliver more thermally stable anthocyanins than purified ones. A different anthocyanin behavior pattern within real food products subjected to thermal processing has been observed due to interactions with some nutrients (proteins, polysaccharides). The most recent studies on the stabilization of anthocyanins by linkages to other molecules using classical and innovative methods are summarized. Ensuring appropriate thermal conditions for processing anthocyanin-rich food will allow a rational design for the future development of stable functional products, which retain these bioactive molecules and their functionalities to a great extent.


Author(s):  
Lucas F. E. Moor ◽  
Thatyana R. A. Vasconcelos ◽  
Raisa da R. Reis ◽  
Ligia S. S. Pinto ◽  
Thamires M. da Costa

: Quinoline and its derivatives comprise an important group of heterocyclic compounds that exhibits a wide range of pharmacological properties such as antibacterial, antiviral, anticancer, antiparasitic, anti-Alzheimer and anticholesterol. In fact, the quinoline nucleus is found in the structure of many drugs and in rational design in medicinal chemistry for the discovery of novel bioactive molecules. Persistent efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. This review highlights some discoveries on the development of quinoline-based compounds in recent years (2013-2019) focusing on their biological activities, including anticancer, antitubercular, antimalarial, anti-ZIKV, anti-DENV, anti-Leishmania and anti-Alzheimer’s disease.


2011 ◽  
Vol 63 (9) ◽  
pp. 822-836 ◽  
Author(s):  
Svetlana Pavlukhina ◽  
Svetlana Sukhishvili

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 982
Author(s):  
Elisa Poyatos-Racionero ◽  
Isabel González-Álvarez ◽  
Paola Sánchez-Moreno ◽  
Leopoldo Sitia ◽  
Francesca Gatto ◽  
...  

Mesoporous silica microparticles functionalized with lactose for the specific release of essential oil components (EOCs) in the small intestine are presented. In vitro and in vivo intestinal models were applied to validate the microparticles (M41-EOC-L), in which the presence of lactase acts as the triggering stimulus for the controlled release of EOCs. Among the different microdevices prepared (containing thymol, eugenol and cinnamaldehyde), the one loaded with cinnamaldehyde showed the most significant Caco-2 cell viability reduction. On the other hand, interaction of the particles with enterocyte-like monolayers showed a reduction of EOCs permeability when protected into the designed microdevices. Then, a microdevice loaded with cinnamaldehyde was applied in the in vivo model of Wistar rat. The results showed a reduction in cinnamaldehyde plasma levels and an increase in its concentration in the lumen of the gastrointestinal tract (GIT). The absence of payload release in the stomach, the progressive release throughout the intestine and the prolonged stay of the payload in the GIT-lumen increased the bioavailability of the encapsulated compound at the site of the desired action. These innovative results, based on the specific intestinal controlled delivery, suggest that the M41-payload-L could be a potential hybrid microdevice for the protection and administration of bioactive molecules in the small intestine and colon.


Author(s):  
Kazuya Matsuo ◽  
Nobuyuki Tamaoki

In the emerging field of photopharmacology, synthetic photoswitches based on reversible photochemical reactions are fused to bioactive molecules. Azobenzene derivatives, which can undergo trans-cis photoisomerization, are typical photoswitches. Most azobenzene-based...


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ana Rey-Rico ◽  
Henning Madry ◽  
Magali Cucchiarini

Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.


Sign in / Sign up

Export Citation Format

Share Document