scholarly journals Single Halide Perovskite/Semiconductor Core/Shell Quantum Dots with Ultrastability and Nonblinking Properties

2019 ◽  
Vol 6 (18) ◽  
pp. 1900412 ◽  
Author(s):  
Xiaosheng Tang ◽  
Jie Yang ◽  
Shiqi Li ◽  
Zhengzheng Liu ◽  
Zhiping Hu ◽  
...  
2016 ◽  
Vol 2 (1) ◽  
pp. e1501104 ◽  
Author(s):  
Rafael S. Sanchez ◽  
Mauricio Solis de la Fuente ◽  
Isaac Suarez ◽  
Guillermo Muñoz-Matutano ◽  
Juan P. Martinez-Pastor ◽  
...  

We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3–xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The “color” of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit.


2019 ◽  
Vol 6 (18) ◽  
pp. 1970107 ◽  
Author(s):  
Xiaosheng Tang ◽  
Jie Yang ◽  
Shiqi Li ◽  
Zhengzheng Liu ◽  
Zhiping Hu ◽  
...  

2019 ◽  
Author(s):  
Aurelio A. Rossinelli ◽  
Henar Rojo ◽  
Aniket S. Mule ◽  
Marianne Aellen ◽  
Ario Cocina ◽  
...  

<div>Colloidal semiconductor nanoplatelets exhibit exceptionally narrow photoluminescence spectra. This occurs because samples can be synthesized in which all nanoplatelets share the same atomic-scale thickness. As this dimension sets the emission wavelength, inhomogeneous linewidth broadening due to size variation, which is always present in samples of quasi-spherical nanocrystals (quantum dots), is essentially eliminated. Nanoplatelets thus offer improved, spectrally pure emitters for various applications. Unfortunately, due to their non-equilibrium shape, nanoplatelets also suffer from low photo-, chemical, and thermal stability, which limits their use. Moreover, their poor stability hampers the development of efficient synthesis protocols for adding high-quality protective inorganic shells, which are well known to improve the performance of quantum dots. <br></div><div>Herein, we report a general synthesis approach to highly emissive and stable core/shell nanoplatelets with various shell compositions, including CdSe/ZnS, CdSe/CdS/ZnS, CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S, and CdSe/ZnSe. Motivated by previous work on quantum dots, we find that slow, high-temperature growth of shells containing a compositional gradient reduces strain-induced crystal defects and minimizes the emission linewidth while maintaining good surface passivation and nanocrystal uniformity. Indeed, our best core/shell nanoplatelets (CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S) show photoluminescence quantum yields of 90% with linewidths as low as 56 meV (19.5 nm at 655 nm). To confirm the high quality of our different core/shell nanoplatelets for a specific application, we demonstrate their use as gain media in low-threshold ring lasers. More generally, the ability of our synthesis protocol to engineer high-quality shells can help further improve nanoplatelets for optoelectronic devices.</div>


2019 ◽  
Vol 29 (46) ◽  
pp. 1904501 ◽  
Author(s):  
Chao Wang ◽  
David Barba ◽  
Gurpreet S. Selopal ◽  
Haiguang Zhao ◽  
Jiabin Liu ◽  
...  

Author(s):  
Lishuang Wang ◽  
Ying Lv ◽  
Jie Lin ◽  
Jialong Zhao ◽  
Xingyuan Liu ◽  
...  

For quantum dots light-emitting diodes (QLEDs), typical colloidal quantum dots (QDs) are usually composed of a core/shell heterostructure which is covered with organic ligands as surface passivated materials to confine...


Nanoscale ◽  
2021 ◽  
Author(s):  
Tuhin Shuvra Basu ◽  
Simon Diesch ◽  
Ryoma Hayakawa ◽  
Yutaka Wakayama ◽  
Elke Scheer

We examined the modified electronic structure and single-carrier transport of individual hybrid core–shell metal–semiconductor Au-ZnS quantum dots using a scanning tunnelling microscope.


2021 ◽  
pp. 2100438
Author(s):  
Chengxi Zhang ◽  
Jiayi Chen ◽  
Lingmei Kong ◽  
Lin Wang ◽  
Sheng Wang ◽  
...  

2021 ◽  
Vol 548 ◽  
pp. 149252
Author(s):  
Sanchaya Pandit ◽  
Sundar Kunwar ◽  
Rakesh Kulkarni ◽  
Rutuja Mandavka ◽  
Shusen Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document