Thermodynamic measurement and modelling of hydrate dissociation for CO 2 /refrigerant + sucrose/fructose/glucose solutions

AIChE Journal ◽  
2021 ◽  
Author(s):  
Parisa Doubra ◽  
Rasoul Hassanalizadeh ◽  
Paramespri Naidoo ◽  
Deresh Ramjugernath
2018 ◽  
Author(s):  
Mingjun Yang ◽  
Yi Gao ◽  
Hang Zhou ◽  
Bingbing Chen ◽  
Yongchen Song

2011 ◽  
Vol 31 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Xuhui ZHANG ◽  
Xiaobing LU ◽  
Shuyun WANG ◽  
Qingping LI ◽  
Haiyuan YAO

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 590
Author(s):  
Lihua Wan ◽  
Xiaoya Zang ◽  
Juan Fu ◽  
Xuebing Zhou ◽  
Jingsheng Lu ◽  
...  

The large amounts of natural gas in a dense solid phase stored in the confined environment of porous materials have become a new, potential method for storing and transporting natural gas. However, there is no experimental evidence to accurately determine the phase state of water during nanoscale gas hydrate dissociation. The results on the dissociation behavior of methane hydrates confined in a nanosilica gel and the contained water phase state during hydrate dissociation at temperatures below the ice point and under atmospheric pressure are presented. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) were used to trace the dissociation of confined methane hydrate synthesized from pore water confined inside the nanosilica gel. The characterization of the confined methane hydrate was also analyzed by PXRD. It was found that the confined methane hydrates dissociated into ultra viscous low-density liquid water (LDL) and methane gas. The results showed that the mechanism of confined methane hydrate dissociation at temperatures below the ice point depended on the phase state of water during hydrate dissociation.


2021 ◽  
Author(s):  
Min Zhang ◽  
Ming Niu ◽  
Shiwei Shen ◽  
Shulin Dai ◽  
Yan Xu

2002 ◽  
Author(s):  
Liviu Tomutsa ◽  
Barry Freifeld ◽  
Timothy J. Kneafsey ◽  
Laura A. Stern

Author(s):  
Ah-Ram Kim ◽  
Gye-Chun Cho ◽  
Joo-Yong Lee ◽  
Se-Joon Kim

Methane hydrate has been received large attention as a new energy source instead of oil and fossil fuel. However, there is high potential for geomechanical stability problems such as marine landslides, seafloor subsidence, and large volume contraction in the hydrate-bearing sediment during gas production induced by depressurization. In this study, a thermal-hydraulic-mechanical coupled numerical analysis is conducted to simulate methane gas production from the hydrate deposits in the Ulleung basin, East Sea, Korea. The field-scale axisymmetric model incorporates the physical processes of hydrate dissociation, pore fluid flow, thermal changes (i.e., latent heat, conduction and advection), and geomechanical behaviors of the hydrate-bearing sediment. During depressurization, deformation of sediments around the production well is generated by the effective stress transformed from the pore pressure difference in the depressurized region. This tendency becomes more pronounced due to the stiffness decrease of hydrate-bearing sediments which is caused by hydrate dissociation.


2017 ◽  
Vol 890 ◽  
pp. 252-259
Author(s):  
Le Wang ◽  
Guan Cheng Jiang ◽  
Xin Lin ◽  
Xian Min Zhang ◽  
Qi Hui Jiang

Molecular dynamics simulations are used to study the dissociation inhibiting mechanism of lecithin for structure I hydrates. Adsorption characteristics of lecithin and PVP (poly (N-vinylpyrrolidine)) on the hydrate surfaces were performed in the NVT ensemble at temperatures of 277K and the hydrate dissociation process were simulated in the NPT ensemble at same temperature. The results show that hydrate surfaces with lecithin is more stable than the ones with PVP for the lower potential energy. The conformation of lecithin changes constantly after the balanced state is reached while the PVP molecular dose not. Lecithin molecule has interaction with lecithin nearby and hydrocarbon-chains of lecithin molecules will form a network to prevent the diffusion of water and methane molecules, which will narrow the available space for hydrate methane and water movement. Compared with PVP-hydrate simulation, analysis results (snapshots and mass density profile) of the dissociation simulations show that lecithin-hydrate dissociates more slowly.


Sign in / Sign up

Export Citation Format

Share Document