Biodiesel purification by novel green solvent based on choline chloride ‐ deep eutectic solvent

Author(s):  
Matheus Romeiro Manoel Santos ◽  
Joel Gustavo Teleken ◽  
Fernanda Tavares ◽  
Edson Antonio Silva
Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 91
Author(s):  
Jukrapun Komaikul ◽  
Supachoke Mangmool ◽  
Waraporn Putalun ◽  
Tharita Kitisripanya

The consumer and cosmetic industries have recently placed a greater emphasis on ecofriendly solvents for botanical extraction, including natural deep eutectic solvents (NADES). In this study, NADES were prepared for Morus alba callus extraction. The efficiency of extraction from the NADES and methanol was investigated by comparison of the stilbenoids yield and anti-melanogenesis activity. Prior to testing the irritability of a suitable NADES on the reconstructed human epidermis (RhE), the effect of the selected NADES on stilbenoids stability was determined. The results showed that the highest yields of stilbenoids were obtained from choline chloride-glycerol mixtures (Ch1G2) and methanol extracts, with no significant difference in yields (5.06 ± 0.05 and 6.32 ± 0.40 mg/g callus dry weight, respectively). The NADES extracts of M. alba callus showed comparable anti-melanogenesis activity compared to methanol. In term of stability, stilbenoids in Ch1G2 remained stable after six months of storage at 4 °C except resveratrol. Furthermore, Ch1G2 had no irritation effect on RhE. Thus, based on the findings of this study, Ch1G2 is an intriguing green solvent alternative for the extraction of M. alba callus and may be advantageous for the preparation of skin-lightening cosmetics.


2017 ◽  
Author(s):  
◽  
Maryam Al Ameri

In this study, green solvent-based pretreatment was developed for improving the conversion of switchgrass to acetoin. Deep eutectic solvents (DESs), comprising choline chloride (ChCl) as a hydrogen-bond acceptor (HBA) and various chemical as a hydrogen-bond donor (HBD), were used to pretreat switchgrass. Different HBD groups, including polyalcohol, amid, diazole, and carboxylic acid, were used to synthesize DESs. The DESs using ChCl-formic acid and ChCl-lactic acid-acetic acid showed excellent performance in enhancing switchgrass digestibility. The obtained hydrolysate was successfully detoxified by using overliming detoxification, which was further used for acetoin fermentation by Bacillus licheniformis (NRRL B-642). The yield and titer of the produced acetoin were 0.377 g/g and 19.6 g/L, respectively. Our research demonstrates that DES pretreatment is an effective method for reducing biomass recalcitrance and improving the conversion of biomass into chemicals.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 384
Author(s):  
Cuicui Li ◽  
Chongxing Huang ◽  
Yuan Zhao ◽  
Chaojian Zheng ◽  
Hongxia Su ◽  
...  

Deep eutectic solvents (DESs) is a newly developed green solvent with low cost, easy preparation and regeneration. Because of its excellent solubility and swelling effect in lignocellulose, it has received widespread attention and recognition. In this study, choline-based deep eutectic solvents (DESs)—choline chloride-urea (CC-U), choline chloride-ethylene glycol (CC-EG), choline chloride-glycerol (CC-G), choline chloride-lactic acid (CC-LA), and choline chloride-oxalic acid (CC-OA)—were used to extract and separate bagasse. The effects of hydrogen bond donors on lignin separation and the fiber and lignin structure were investigated. All five DESs could dissolve lignin from bagasse; acidic DESs exhibited higher solubility than basic DESs. CC-OA effectively separated lignin and hemicellulose. CC-LA showed weaker lignin separation ability than CC-OA. CC-G, CC-EG, and CC-U were more inclined to selectively separate lignin than hemicellulose. The crystalline cellulose II structure was retained after DES pretreatment. Acidic DESs effectively improved the crystallinity of bagasse fiber; the crystallinities for CC-OA and CC-LA pretreatment were 62.26% and 61.65%, respectively. The lignin dissolved in DES was mainly syringyl lignin. The lignin dissolved in CC-U, CC-LA, and CC-OA contained a small amount of guaiacyl lignin.


2016 ◽  
Vol 12 ◽  
pp. 1-4 ◽  
Author(s):  
David O. Oseguera-Galindo ◽  
Roberto Machorro-Mejia ◽  
Nina Bogdanchikova ◽  
Josue D. Mota-Morales

2021 ◽  
Vol 60 (5) ◽  
pp. 2011-2026
Author(s):  
Eng Kein New ◽  
Ta Yeong Wu ◽  
Khai Shing Voon ◽  
Alessandra Procentese ◽  
Katrina Pui Yee Shak ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1170
Author(s):  
Yuan Zhu ◽  
Benkun Qi ◽  
Xinquan Liang ◽  
Jianquan Luo ◽  
Yinhua Wan

Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2149
Author(s):  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Rajkumar Bandi ◽  
Ramakrishna Dadigala ◽  
Eun-Ah Lee ◽  
...  

In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose (Pinus densiflora S. et Z.) was treated using a deep eutectic solvent (DES) with choline chloride (ChCl)/lactic acid (LA). From the DES-soluble fraction, DES-lignin (DL) was isolated by a regeneration process. Lignin esterification was conducted with palmitoyl chloride (PC). As the PC loading increased for DL esterification, the Mw of esterified DL (EDL) was increased, and the glass transition temperature (Tg) was decreased. In DL or EDL/PLA composite films, it was observed that EDL/PLA had cleaner and smoother morphological characteristics than DL/PLA. The addition of DL or EDL in a PLA matrix resulted in a deterioration of tensile properties as compared with neat PLA. The EDL/PLA composite film had a higher tensile strength and elastic modulus than the DL/PLA composite film. DL esterification decreased water absorption with lower water diffusion coefficients. The effect of lignin esterification on improving the compatibility of lignin and PLA was demonstrated. These results are expected to contribute to the development of high-strength lignin composites.


2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


Sign in / Sign up

Export Citation Format

Share Document