scholarly journals Effect of Choline-Based Deep Eutectic Solvent Pretreatment on the Structure of Cellulose and Lignin in Bagasse

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 384
Author(s):  
Cuicui Li ◽  
Chongxing Huang ◽  
Yuan Zhao ◽  
Chaojian Zheng ◽  
Hongxia Su ◽  
...  

Deep eutectic solvents (DESs) is a newly developed green solvent with low cost, easy preparation and regeneration. Because of its excellent solubility and swelling effect in lignocellulose, it has received widespread attention and recognition. In this study, choline-based deep eutectic solvents (DESs)—choline chloride-urea (CC-U), choline chloride-ethylene glycol (CC-EG), choline chloride-glycerol (CC-G), choline chloride-lactic acid (CC-LA), and choline chloride-oxalic acid (CC-OA)—were used to extract and separate bagasse. The effects of hydrogen bond donors on lignin separation and the fiber and lignin structure were investigated. All five DESs could dissolve lignin from bagasse; acidic DESs exhibited higher solubility than basic DESs. CC-OA effectively separated lignin and hemicellulose. CC-LA showed weaker lignin separation ability than CC-OA. CC-G, CC-EG, and CC-U were more inclined to selectively separate lignin than hemicellulose. The crystalline cellulose II structure was retained after DES pretreatment. Acidic DESs effectively improved the crystallinity of bagasse fiber; the crystallinities for CC-OA and CC-LA pretreatment were 62.26% and 61.65%, respectively. The lignin dissolved in DES was mainly syringyl lignin. The lignin dissolved in CC-U, CC-LA, and CC-OA contained a small amount of guaiacyl lignin.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 91
Author(s):  
Jukrapun Komaikul ◽  
Supachoke Mangmool ◽  
Waraporn Putalun ◽  
Tharita Kitisripanya

The consumer and cosmetic industries have recently placed a greater emphasis on ecofriendly solvents for botanical extraction, including natural deep eutectic solvents (NADES). In this study, NADES were prepared for Morus alba callus extraction. The efficiency of extraction from the NADES and methanol was investigated by comparison of the stilbenoids yield and anti-melanogenesis activity. Prior to testing the irritability of a suitable NADES on the reconstructed human epidermis (RhE), the effect of the selected NADES on stilbenoids stability was determined. The results showed that the highest yields of stilbenoids were obtained from choline chloride-glycerol mixtures (Ch1G2) and methanol extracts, with no significant difference in yields (5.06 ± 0.05 and 6.32 ± 0.40 mg/g callus dry weight, respectively). The NADES extracts of M. alba callus showed comparable anti-melanogenesis activity compared to methanol. In term of stability, stilbenoids in Ch1G2 remained stable after six months of storage at 4 °C except resveratrol. Furthermore, Ch1G2 had no irritation effect on RhE. Thus, based on the findings of this study, Ch1G2 is an intriguing green solvent alternative for the extraction of M. alba callus and may be advantageous for the preparation of skin-lightening cosmetics.



2017 ◽  
Vol 03 ◽  
pp. 1 ◽  
Author(s):  
Asma Nisar ◽  
Awang Soh Mamat ◽  
Md Irfan Hatim ◽  
Muhammad Shahzad Aslam ◽  
Muhammad Syarhabil Ahmad ◽  
...  

Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2) were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin) from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.



2017 ◽  
Vol 03 ◽  
pp. 1 ◽  
Author(s):  
Asma Nisar ◽  
Awang Soh Mamat ◽  
Md Irfan Hatim ◽  
Muhammad Shahzad Aslam ◽  
Muhammad Syarhabil Ahmad ◽  
...  

Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2) were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin) from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.



2017 ◽  
Vol 03 ◽  
pp. 7
Author(s):  
Asma Nisar ◽  
Awang Soh Mamat ◽  
Md Irfan Hatim ◽  
Muhammad Shahzad Aslam ◽  
Muhammad Syarhabil Ahmad ◽  
...  

Deep eutectic solvents as a new type of eco-friendly solvents have attracted attention in chemistry, medicine, and other fields for the extraction and separation of target compounds from medicinal plants. Deep eutectic solvents are easy to prepare and have many advantages as solvents, such as chemical inertness with water, low cost, easy biodegradability, and pharmaceutically acceptable toxicity. In this study, a deep eutectic solvent made up of choline chloride-glycerol (1:2) was used for the extraction of flavonoids from Catharanthus roseus plant parts (flower petal, leaves, stem, and root). The highest amount of phenolic content was detected in flower petal, that is, 194.50 mg GAE/g. In DPPH test, the maximum amount of antioxidant activity determined in the flower petal was 73.13%; IC50 was calculated by using a linear regression equation; IC50 value of the standard, stem, root, leaf, and flower petal was 13.22, 90.44, 83.93, 120.14, 79.49 μg/ml, respectively. The result of this research is that Catharanthus roseus has a compatible antioxidant activity. This can be helpful for the treatment of diseases caused by free-radical oxidative stress.



2017 ◽  
Author(s):  
◽  
Maryam Al Ameri

In this study, green solvent-based pretreatment was developed for improving the conversion of switchgrass to acetoin. Deep eutectic solvents (DESs), comprising choline chloride (ChCl) as a hydrogen-bond acceptor (HBA) and various chemical as a hydrogen-bond donor (HBD), were used to pretreat switchgrass. Different HBD groups, including polyalcohol, amid, diazole, and carboxylic acid, were used to synthesize DESs. The DESs using ChCl-formic acid and ChCl-lactic acid-acetic acid showed excellent performance in enhancing switchgrass digestibility. The obtained hydrolysate was successfully detoxified by using overliming detoxification, which was further used for acetoin fermentation by Bacillus licheniformis (NRRL B-642). The yield and titer of the produced acetoin were 0.377 g/g and 19.6 g/L, respectively. Our research demonstrates that DES pretreatment is an effective method for reducing biomass recalcitrance and improving the conversion of biomass into chemicals.



2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.



2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production



BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7301-7310
Author(s):  
Veronika Majová ◽  
Silvia Horanová ◽  
Andrea Škulcová ◽  
Jozef Šima ◽  
Michal Jablonský

This study aimed to resolve the issue of the lack of detailed understanding of the effect of initial lignin content in hardwood kraft pulps on pulp delignification by deep eutectic solvents. The authors used Kappa number of the concerned pulp, intrinsic viscosity, and selectivity and efficiency of delignification as the parameters of the effect. The pulp (50 g oven dry pulp) was treated with four different DESs systems based on choline chloride with lactic acid (1:9), oxalic acid (1:1), malic acid (1:1), and system alanine:lactic acid (1:9); the results were compared to those reached by oxygen delignification. The results showed that the pulp with a higher initial lignin content had a greater fraction of easily removed lignin fragments.



Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3379
Author(s):  
Edyta Słupek ◽  
Patrycja Makoś ◽  
Jacek Gębicki

This paper presents the theoretical screening of 23 low-cost deep eutectic solvents (DESs) as absorbents for effective removal of the main impurities from biogas streams using a conductor-like screening model for real solvents (COSMO-RS). Based on thermodynamic parameters, i.e., the activity coefficient, excess enthalpy, and Henry’s constant, two DESs composed of choline chloride: urea in a 1:2 molar ratio (ChCl:U 1:2), and choline chloride: oxalic acid in a 1:2 molar ratio (ChCl:OA 1:2) were selected as the most effective absorbents. The σ-profile and σ-potential were used in order to explain the mechanism of the absorptive removal of CO2, H2S, and siloxanes from a biogas stream. In addition, an economic analysis was prepared to demonstrate the competitiveness of new DESs in the sorbents market. The unit cost of 1 m3 of pure bio-methane was estimated to be in the range of 0.35–0.37 EUR, which is comparable to currently used technologies.



Sign in / Sign up

Export Citation Format

Share Document