scholarly journals Novel strategy for the demulsification of isolated sesame oil bodies by endogenous proteases

Author(s):  
Yeming Chen ◽  
Huina Li ◽  
Caimeng Zhang ◽  
Xiangzhen Kong ◽  
Yufei Hua
Author(s):  
Yeming Chen ◽  
Huina Li

Oleosins are mandatory to avoid coalescence of oil bodies (OBs), so commercial proteases are used to efficiently demulsify OBs into food oil. However, the commercial proteases and pH regulators (acid and alkali) greatly restrict this method in industry. In this study, aspartic endopeptidases, subtilisin-like proteases, metalloendopeptidase, and serine carboxypeptidases were identified in isolated sesame OBs by liquid chromatography tandem mass spectrometry (LC–MS/MS). Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis and protease inhibitor assay revealed that aspartic endopeptidases exerted high activity against oleosins in a pH range of 3−6 and a temperature range of 40−70 °C, while subtilisin-like proteases exhibited sharp optimum at pH 5. Metalloendopeptidase contributed to the low activity against oleosins at pH 7−9. Trichloroacetic acid–nitrogen soluble index and free amino acid analyses quantitatively revealed that the activity of serine carboxypeptidases was high at pH 3−5, and optimal at pH 4; the combined activity of aspartic endopeptidases and subtilisin-like proteases was optimal at pH 5. By incubating the isolated sesame OBs at pH 5 and 60 °C for 2 h, approximately 97% of total lipids were recovered as free oil. At last, LC−MS/MS analysis gave deep insight into the intrinsic proteins of sesame OBs: three kinds of oleosins with molecular weights around 17 kDa, and four kinds around 15 kDa; besides 27 kDa caleosin, four kinds of oil body-associated proteins and one kind of peroxygenase-like protein also around 27 kDa; in addition to 39 kDa steroleosin, 11-beta-hydroxysteroid dehydrogenase-like 6 also around 39 kDa.


1997 ◽  
Vol 122 (4) ◽  
pp. 819-824 ◽  
Author(s):  
J. C.F. Chen ◽  
R.-H. Lin ◽  
H.-C. Huang ◽  
J. T.C. Tzen
Keyword(s):  

2011 ◽  
Vol 49 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Eric S.L. Hsiao ◽  
Jason T.C. Tzen

2003 ◽  
Vol 19 (5) ◽  
pp. 1623-1626 ◽  
Author(s):  
C.-C. Peng ◽  
I.-P. Lin ◽  
C.-K. Lin ◽  
J.T.C. Tzen
Keyword(s):  

Author(s):  
I. Russo ◽  
J. Saby ◽  
J. Russo

It has been previously demonstrated that DMBA-induced rat mammary carcinoma originates in the terminal end bud (TEB) of the mammary gland by proliferation of intermediate type cells (1). The earliest lesion identified is the intraductal proliferation (IDP), which gives rise to intraductal carcinomas. These evolve to cribriform, papillary and comedo types (2). In the present work, we report the ultrastructural changes that take place in the IDP for the formation of a cribriform pattern.Fifty-five-day-old Sprague Dawley virgin female rats were inoculated intra- gastrically with 20 mg 7,12-dimethylbenz(a)anthracene (DMBA) in 1 ml sesame oil. Non-inoculated, age-matched females were used as controls. Mammary glands from both control and experimental rats were removed weekly from the time of inoculation until 86 days post-inoculation. The glands were fixed and processed for electron microscopy (2).The first change observed in IDP's was the widening of intercellular spaces and the secretion of an electron dense material into these spaces (Fig. 1).


2019 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Mary Zuccato ◽  
Dustin Shilling ◽  
David C. Fajgenbaum

Abstract There are ∼7000 rare diseases affecting 30 000 000 individuals in the U.S.A. 95% of these rare diseases do not have a single Food and Drug Administration-approved therapy. Relatively, limited progress has been made to develop new or repurpose existing therapies for these disorders, in part because traditional funding models are not as effective when applied to rare diseases. Due to the suboptimal research infrastructure and treatment options for Castleman disease, the Castleman Disease Collaborative Network (CDCN), founded in 2012, spearheaded a novel strategy for advancing biomedical research, the ‘Collaborative Network Approach’. At its heart, the Collaborative Network Approach leverages and integrates the entire community of stakeholders — patients, physicians and researchers — to identify and prioritize high-impact research questions. It then recruits the most qualified researchers to conduct these studies. In parallel, patients are empowered to fight back by supporting research through fundraising and providing their biospecimens and clinical data. This approach democratizes research, allowing the entire community to identify the most clinically relevant and pressing questions; any idea can be translated into a study rather than limiting research to the ideas proposed by researchers in grant applications. Preliminary results from the CDCN and other organizations that have followed its Collaborative Network Approach suggest that this model is generalizable across rare diseases.


Author(s):  
Taddese Mekonnen Ambay ◽  
Philipp Schick ◽  
Michael Grimm ◽  
Maximilian Sager ◽  
Felix Schneider ◽  
...  

2020 ◽  
Author(s):  
Ana Beloqui ◽  
Francesco Suriano ◽  
Matthias Hul ◽  
Yining Xu ◽  
Véronique Préat ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 58-76 ◽  
Author(s):  
Bohan Rong ◽  
Qiong Wu ◽  
Chao Sun

Melatonin is a well-known molecule for its involvement in circadian rhythm regulation and its contribution to protection against oxidative stress in organisms including unicellular alga, animals and plants. Currently, the bio-regulatory effects of melatonin on the physiology of various peripheral tissues have drawn a great attention of scientists. Although melatonin was previously defined as a neurohormone secreted from pineal gland, recently it has been identified that virtually, every cell has the capacity to synthesize melatonin and the locally generated melatonin has multiple pathophysiological functions, including regulations of obesity and metabolic syndromes. Herein, we focus on the effects of melatonin on fat deposition in various peripheral organs/tissues. The two important regulatory mechanisms related to the topic, i.e., the improvements of circadian rhythms and antioxidative capacity will be thoroughly discussed since they are linked to several biomarkers involved in obesity and energy imbalance, including metabolism and immunity. Furthermore, several other functions of melatonin which may serve to prevent or promote obesity and energy dysmetabolism-induced pathological states are also addressed. The organs of special interest include liver, pancreas, skeletal muscle, adipose tissue and the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document